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1	E xecutive Summary

1.1	 Background and objectives
All organisations bear operational risk in order to achieve their objectives. For organisations 
motivated by profit, operational profit is the return required by the capital owners for bearing the 
operational risk associated with the production process. Hence operational risk is of primary concern 
to internal stakeholders—including the capital owners of the business, management who control 
operational risk, and employees who are part of the operational production process—and external 
parties such as creditors, customers, and regulators who are impacted by operational risk failures.

As it is such a fundamental risk, most organisations are very conscious of operational risk, and many 
of them are very good at managing and mitigating operational risk. Despite this, however, the field of 
operational risk assessment is still relatively new, particularly when it comes to its inclusion in capital 
frameworks. The global banking industry has developed regulatory capital frameworks for operational 
risk that have been used for the last five to 10 years, and some countries are currently following 
suit with respect to equivalent insurance regulatory capital standards. But outside of these two 
industries, there is relatively little operational risk assessment activity from regulators, industry bodies, 
or individual companies.

The authors thus felt it a worthwhile area of research to investigate the current state of play in 
operational risk assessment frameworks, and how they are likely to evolve over the coming years. 
The objectives of this research report are therefore to provide readers with an overview of existing 
operational risk assessment frameworks around the world, along with a detailed investigation into the 
current methods and emerging practice in this area.

1.2	S cope and structure of the report
We start this report with an introduction to operational risk, in Section 2, which is designed to put 
operational risk in context for readers who are new to this area. We then delve into the nature of 
operational risk events in Section 3, highlighting the highly nonsymmetric nature of operational risk, 
which sees operational event numbers dominated by small loss sizes while overall operational losses 
are dominated by a very small number of extremely large events. This is one of the defining features 
of operational risk that makes it so unique relative to other risk types, and consequently difficult  
to assess.

We then work through a detailed assessment of the four main approaches used to assess 
operational risk. In increasing order of complexity they are:

�� Basic indicators and standard formulas (Section 4)
�� Quantitative risk assessment or scenario approach (Section 5)
�� Statistical or loss distribution approach (LDA) (Section 6)
�� Structural or causal approach (Section 7)

For each of these approaches we outline the methodology and discuss the advantages and limitations. 
Examples are used to illustrate methods, with additional case studies provided in Section 11.

After investigating the various approaches, we then turn our attention, in Section 8, to the various 
regulatory requirements for operational risk that exist in the financial services sector around the 
world. Operational risk is one of the areas where such frameworks exhibit the most divergence, with 
some jurisdictions clearly more sophisticated in their approaches relative to others.

Section 9 discusses emerging operational risks, for which we explore the use of phylogenetic 
methods to understand the underlying evolutionary process of characteristics that drive operational 
risk losses. Phylogenetic methods enable the relationships between characteristics of 'things' 
(organisms, companies, risk events, etc.) to be determined in the most parsimonious and objective 
way. This also has important implications for the loss data collection process, which is the subject of 
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Section 10. This is the process through which operational losses are recorded, which is used as a 
key resource to calibrate many operational risk assessment models. 

Given the significant length of this research report and the fact that many sections are relatively 
independent of one another, we encourage readers to skip ahead to those sections of the report that 
are of particular interest to them.

1.3	K ey research findings
There are a number of key findings from this research paper, which we have synthesised below.

1. Operational risk is a material risk and is one of the major causes of organisational failure 
and the destruction of shareholder value

Recent history bears witness to some of the most significant operational risk events that have  
caused not only complete organisational failure and the destruction of significant shareholder 
value, but perhaps most unfortunately also the loss of many lives. Significant and increasing effort 
is expended by most organisations to mitigate the likelihood and severity of operational risk events 
given their consequences, although the science of operational risk assessment is still in its relative 
infancy. It has only been in the last 10 years that Basel II has upped the ante in this area, requiring 
banks to methodically quantify their operational risk, with other industries such as insurance not 
too far behind. This discipline is likely to develop significantly over coming years as the value of 
an effective operational risk management framework in creating a resilient organisation becomes 
increasingly accepted.

2. The scope of operational risk needs to consider all factors of production

Operational risk is typically defined with respect to people, process, and systems. However, we feel 
that this is somewhat limiting, and that it is important to consider all the factors of production. Certain 
production factors will be more or less important for different industries and organisations, and the 
relativities between the different forms of labour input are changing rapidly.

3. Operational losses are highly skewed and dominated by high-severity, low frequency events

Whilst the numbers of operational loss events are dominated by those with low severity, total 
operational losses are dominated by high-severity, low frequency events. This interdependency 
and nonlinearity is a key feature that must influence the entire operational risk assessment and 
management framework. This means that any assessment of operational catastrophe losses, such as 
what is used to set required capital, effectively boils down to an assessment of these high-severity, 
low-frequency events.

4. Basic indicators and standard formula approaches are a simple but ultimately very blunt tool

Whilst appealing through their simplicity, basic indicator and standard formula approaches can 
be very misleading, as they are insensitive to the actual operational state of the organisation (as 
demonstrated by the case study in Section 11). Such methods should not be relied upon as an 
accurate or informative measure of actual operational risk.

5. Scenario and statistical modelling approaches such as LDA are useful, but they have 
significant limitations

Current practice for the leading global banks is dominated by the use of the combination of scenario 
and statistical modelling approaches such as LDA. These are significantly better than standard 
formula approaches as they integrate multiple sources of information: internal and external loss data, 
scenario information, and business environment and internal control factors. However, they do have 
significant limitations, most of which are a result of the disjoint between modelled loss outcomes and 
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the evolving state of the organisation’s operational risk drivers. Abstract statistical methods  
such as correlations and copulas mean that modelled outcomes can be difficult to calibrate and 
explain, and lack robustness for high severity loss estimates given the paucity of historical loss 
data and difficulties people have in estimating a 1-in-200 or -1,000-year event. Such models in the 
banking sector also failed to respond to clearly changing operational risk levels over the period 
of the recent global financial crisis. There is increasing acceptance within the industry that these 
approaches need improvement.

6. Structural or causal-based models are leading emerging best practice in this field

Latest emerging practice is in the field of structural models, which link outcomes directly to the 
primary causal drivers of operational risk. This is typically achieved via a Bayesian network approach 
that conditions operational outcomes (both financial and nonfinancial) upon the range of causal 
drivers directly accounting for their complex interdependencies. The strength of this approach is that 
it is also able to flow information in both directions through the network via Bayesian inference, which 
enables the robust determination of operational risk limits to be derived consistent with operational 
risk appetite levels. The limitation with this approach is that it can be more complex and involved to 
implement, and thus needs to be judiciously applied.

7. There is wide divergence in regulatory maturity levels for operational risk across regions, 
countries, industries, and companies

Regulatory frameworks for operational risk are evolving rapidly, particularly in the banking sector and 
increasingly in other financial services sectors such as insurance. However, there is still significant 
divergence in practice by region, with many countries including the largest insurance markets of the 
United States and Japan still only using a basic indicator approach. Outside of the financial services 
industry, there is a general lack of regulatory capital frameworks for operational risk, although there 
is increasing recognition that quantification of operational risk is becoming an increasingly important 
part of an enterprise risk management framework.

8. Phylogenetic techniques are now being used as a method of assessing emerging 
operational risks

The assessment of emerging operational risk is a very new area. Existing techniques largely centre 
around scenario analysis. However, phylogenetic techniques are showing some promise and are 
being considered by a number of organisations. These techniques enable the objective assessment 
of the evolutionary relationships of the characteristics of operational risks to be determined, thus 
enabling a structured way in which emerging or evolving risks might occur in the future.

9. The development of a loss data collection process can add significant value to operational 
risk management

A loss data collection (LDC) process is a central element in an operational risk assessment and 
management framework that can add significant value by enabling the analysis of actual losses to 
be used to condition future expected losses and to identify appropriate risk mitigation controls. 
One important aspect of these frameworks is that they should be constructed such that they do 
not lose information in the data capture process, and such that the underlying causal drivers and 
characteristics can be identified, thus enabling advanced analytical techniques such as phylogenetic 
methods to extract as much insight as possible from them.

1.4	 Feedback
The authors welcome any feedback or comments that readers may have on this report, and we 
sincerely hope that you find it a useful resource for professional use over many years. Please feel free 
to contact the authors at joshua.corrigan@milliman.com or paola.luraschi@milliman.com with your 
questions regarding the report or to further discuss its findings.
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2	I ntroduction

2.1	D efinition of operational risk
The primary objective of most business organisations is to generate operating profit. This profit is 
effectively the return to the owners of the business for undertaking the operating activities of the firm, 
from which they bear operational risk in the process. Operational risk is thus the risk of loss resulting 
from failed operational activities. Such failures arise from application of the firm’s productive inputs, 
such as natural resources, labour, and capital, to the process of the production of output goods and 
services. Understanding this production process is the key to understanding operational risk.

Most regulatory frameworks used in financial services define operational risk as the risk of loss 
resulting from inadequate or failed internal processes, people, and systems, or from external events. 
Whilst this definition is clear and pragmatic, we think it is valuable to consider the full range of 
potential productive inputs that constitute operational activities, and how these activities interact with 
exogenous environmental factors. In many cases it is often a failure in an endogenous productive 
input, which creates an inherent sensitivity to some exogenous factor, which becomes the final nail 
in the coffin. So perhaps a more fundamental definition would be the risk of loss resulting from 
inadequate or failed productive inputs used in an operational activity.

A firm’s productive inputs, or factors of production, should ideally be considered at a granular level, as 
these give us a detailed insight into the nature of operational activities and thus operational risk. For 
example, when we talk about people risk, what exactly are we referring to? Is it the number of people, 
their levels of operational expertise as embodied in their intellectual capital, the application of their 
physical labour, or their social capital in contributing to operational culture? We feel that it is important 
for the operational risk management framework to be cognisant of these different elements in order for 
it to be complete. Figure 1 identifies and describes these factors of production at a high level.

Figure 1: Factors of Production Relevant for Operational Risk

Type Productive Input Description

Natural Resources Land The physical space used to carry out the production process that may 

be owned, rented, or otherwise utilised

Natural Resources Raw materials Naturally occurring goods such as water, air, minerals, flora, and fauna

Labour Physical labour Physical work performed by people

Labour Human capital The value that employees provide through the application of their 

personal skills that are not owned by an organisation

Labour Intellectual capital The supportive infrastructure, brand, patents, philosophies, processes, 

and databases that enable human capital to function

Labour Social capital The stock of trust, mutual understanding, shared values, and socially 

held knowledge, commonly transmitted throughout an organisation as 

part of its culture

Capital Working capital The stock of intermediate goods and services used in the production 

process, such as parts, machines, and buildings

Capital Public capital The stock of public goods and services used but not owned by the 

organisation, such as roads and the Internet

Assessing and understanding how these input factors are used in the operational production process 
is the first step in operational risk management. Different industries and companies within each are 
characterised by different relative quantities of inputs, and the different methods in which they are 
combined to produce outputs. For example, financial services firms use relatively little direct natural 
resources relative to a manufacturing company, but will use proportionately greater intellectual and 
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social capital. The relative quantities of inputs will also likely change over time, which means that an 
operational risk framework needs to be adaptive. As a result of the numerous sources of production 
inputs, operational risks are very broad and heterogeneous across industries and companies.

2.2	W hy should we care about operational risk management?
Operational risk management is the heart of almost every business, because a majority of the 
productive inputs of a company are used in operational activities. Whether people realise it or not, 
many are already experts at operational risk management as it relates to their segment of a specific 
operational activity. However, for any company larger than a sole trader, it is almost impossible for any 
one individual to be an expert in operational risk management at an enterprise level. Many companies 
fail as a result of operational risk, such as Barings Bank when it became bankrupt in 1995, which 
was due to the actions of a rogue trader, Nick Leeson. Hence systematically managing operational 
risk at an enterprise level is a critical management activity for complex organisations. 

When undertaken properly, operational risk management can add significant value to a business by:

�� Identifying the most critical operational risk drivers requiring management, thus reducing the risk of 
operational failures

�� Increasing the likelihood of strategic business objectives being met

�� Optimising operational risk exposures within a dynamic and evolving business environment

�� Facilitating better management decisions through a framework that is engaging to business 
managers because it is framed in terms of real business drivers and language

�� Integrating multiple risk constructs, including risk assessment, capital assessment, risk appetite, 
setting operational risk limits, emerging risk assessment, risk culture, risk monitoring, and reporting

2.3	 Requirements of and use cases for an operational risk management framework
An effective operational risk management framework needs to be able to integrate all of the various 
risk constructs, including:

�� Risk identification
�� Risk assessment
�� Risk capital assessment
�� Risk monitoring
�� Risk mitigation
�� Risk appetite and risk limit setting
�� Risk sensitivity analysis
�� Emerging risk assessment
�� Risk culture assessment
�� Risk reporting, distribution, and communication

All of these components are important. Traditional frameworks have tended to treat each of them as 
separate tasks, with relatively loose points of integration between them. For example, assessment of 
operational risk capital using simple techniques such as standard formulas, results in a disconnect 
to the setting of risk appetite and risk limits based upon sources of risk and business risk drivers. 
Unless these elements are effectively integrated into one framework, they will lack the integrity 
needed to manage the business effectively and demonstrate value add.

2.4	 A complex systems science approach
Milliman’s approach to operational risk management is founded on the work that has been developed 
over recent decades in the field of complex systems science. This field has developed important 
findings that we believe play a central role in the assessment of risks for organisations, which 
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themselves can be viewed as complex adaptive systems. These findings are based upon the premise 
that risk frameworks and tools need to embrace the following properties to be effective:

�� Holism: A system is more than just the sum of its parts, and in order to understand its behaviour a 
holistic rather than a reductionist approach is needed.

�� Nonlinearity: All complex systems are characterised by nonlinear behaviour, which needs to be a 
core feature of the interrelationships between various states of system drivers.

�� Human bias: Companies are comprised of people that are subject to a range of biases, which risk 
frameworks need to incorporate.

�� Emergence: Risk can be viewed as the unintended emergent property of a complex adaptive 
system that is subject to environmental adaption forces.

These properties are the defining characteristics of a complex adaptive system, of which large 
businesses are prime examples. Such systems exhibit very interesting and important behaviours for 
risk management, including:

�� Self-organisation: They have structure and hierarchy, but few leverage points.

�� Interacting feedback loops: They can cause highly nonlinear behaviour, resulting in potentially 
catastrophic outcomes.

�� Tipping points: Once the system reaches a critical threshold or level of complexity, they  
can collapse.

�� Path-dependencies: Historical evolutionary paths are important as they influence behaviour.

Figure 2 illustrates the relationships between system structure and crisis events.

Figure 2: Understanding How System Structure Results in Crisis Events
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Figure 2 illustrates that, by understanding the somewhat opaque underlying system structure, we are 
better able to make sense of the patterns of outcomes that the system is characterised by, which in 
turn lead to risk events and occasionally crises. Traditional operational risk management frameworks 
focus on the obvious components that are above the water line, which results in backward-looking, 
relatively static approaches to risk management which don’t provide any explanatory power. However, 
by focusing on the underlying system structure, a much richer set of information is then available from 
which to populate all the operational risk constructs, resulting in insight being generated earlier and 
with better predictive capability.

Before turning our attention to the practical aspects of a risk framework based upon such a 
philosophy, we first outline in the following sections the nature of operational risk events, and 
the traditional approaches that are used for operational risk modelling and management. For 
advanced readers who are familiar with such material and wish to focus on complex system science 
approaches, we invite you to skip ahead to Section 7.
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3	Na ture of operational risk events

3.1	 Loss frequency and severity distributions
Unlike many other types of risk, operational risks and their associated losses are commonly 
characterised as having heavy-tailed distributions: a large number of very small losses and a very 
small number of extremely large losses. This is clearly evident in the global banking industry, as 
shown by Figures 3 and 4, produced by ORX.1

Figure 3: Distribution of Number of Events by Size

Figure 4: Distribution of Total Gross Loss by Size

1	 Refer ORX (2010).
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Figure 3 shows that almost 80% of operational risk events are in the smallest loss size category2 
of EUR 20,000-100,000, whilst Figure 4 shows that almost half of the total gross losses are in the 
highest loss size category of EUR 100,000+. These distributions tend to be even more skewed 
when considered at more granular levels. For example, according to ORX,3 out of a set of 6,593 
operational losses in the retail banking business line for the Clients, Products, and Business 
Practices event type, the 10 largest losses account for 44% of the total losses, and the 100 largest 
losses account for nearly 75% of the total loss value.

These findings present difficulties to those interested in assessing operational risk. The fact that total 
losses are dominated by a handful of extreme tail events means that distribution parameter estimates 
and statistical characteristics such as means and VaR/CTE are likely to be unstable, as they can be 
materially influenced by single observations. Thus capital measurements which are dependent upon 
correct modelling of the tail of such distributions are highly sensitive to single large loss events and 
are thus quite uncertain.

It is highly unlikely that a single organisation has a statistically significant number of large loss events 
to properly assess the tail of the distribution. Even when external loss data is available, such as 
in banking, there is still a general paucity of data in the tails, particularly when it is segmented by 
business line and event type. Cope et al. (2009) conclude that it would take many thousands of 
years of loss data to be collected in order to have sufficient confidence in the assessment of large 
severity operational risk losses.

Within the financial services industry, operational risk losses are measured in terms of financial loss. 
In other industries, however, it’s just one of the ways of measuring operational loss, in many cases 
not even the primary unit of measurement. The number of lives lost is perhaps the most important 
way of comparing many operational risk events, particularly in highly industrialised sectors such as 
mining and energy. Clearly, there are varying degrees of severity below this, relating to physical, 
mental, and emotional damage that can occur to people experiencing an operational event. Similarly, 
varying degrees of loss can occur to any of the factors of production used in a production process, 
whether it be natural resources, labour, or capital, and the challenge for operational risk management 
is to understand, assess, and manage all these important dimensions of operational risk.

3.2	 Operational risk event examples
Given the above discussion on the statistical distributions that operational losses tend to follow, 
it is typical to consider segmenting the distribution into a few alternative components. The most 
common method of segmentation is into three categories: low-severity and high-frequency events, 
medium-severity and medium-frequency events, and high-severity and low-frequency events. These 
components are broadly meant to capture different underlying loss generation mechanisms or 
operational processes, although this is a very broad approach and not tied to any specific activities.

2	 Note that this database has a minimum reporting size for any loss event of EUR 20,000.
3	 Refer ORX (2009).
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Figure 5 provides some examples of operational events for each of these categories in a range  
of industries.

Figure 5: Operational Event Examples

Insurance Banking Mining Energy

Low Severity, High 

Frequency

Claims processing,  

data errors

ATM failures Transport service 

interruption

Meter reading errors

Medium Severity, 

Medium Frequency

Fraud, regulatory 

compliance failure

Online security 

breach

Environmental 

contamination

Environmental 

contamination

High Severity, Low 

Frequency

Mis-selling,  

mis-pricing

Rogue trader Mine collapse Oil spill, gas  

plant fire

Clearly, there are many types of events that could be categorised in this way. Some specific 
examples of very high severity and publicly noteworthy operational risk events across these industries 
include the following:

�� Insurance: Mis-selling

−− Equitable Life, the world’s oldest mutual insurer, almost became bankrupt in early 2000, after it 
mis-priced embedded guarantees in its with-profits products.

−− Endowment mortgages sold to 11 million people in the UK in the late 1980s in which the risks 
of the product were not adequately explained. The Treasury Select Committee estimated in 
2004 that total shortfalls were circa GBP 40 billion, with the industry paying compensation of 
around GBP 5 billion.4

−− HIH is Australia’s largest corporate collapse, having losses totalling AUD 5.3 billion, as a result 
of a range of problems including pricing and reserving errors, and internal fraud by management.

�� Banking: Rogue traders

−− Barings Bank, 1995, Nick Leeson lost GBP 827 million, which caused the bank to  
become insolvent.

−− Society Generale, 2008, Jerome Kerviel lost EUR 4.9 billion.

−− UBS, 2011, Kweku Adoboli lost USD 2.3 billion.

�� Mining

−− Benxihu Colliery, 1942, in China the world’s worst known mine disaster killed 1,549 miners.

−− Ulyanovskaya mine, 2007, in Russia, which killed 106 miners.

−− Pike River mine, 2010, in New Zealand, which killed 29 miners.

4	 Refer Corrigan et al. (2011).
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�� Energy

−− The Gulf War oil spill and associated Kuwaiti oil fires, 1991, in Kuwait, as a result of the defeat 
of the Iraqi army in Kuwait.

−− Deepwater Horizon oil spill, operated by BP in 2010, which spilt 560 tons of crude oil into the 
Gulf of Mexico over a three-month period and killed 11 men working on the platform.

−− Exxon Valdex oil spill in 1989, which spilt up to 750,000 barrels of crude oil into Prince William 
Sound in Alaska.

−− Chernobyl disaster in Ukraine in 1986, which released large quantities of radioactive 
contamination into the atmosphere, spreading across much of Western USSR and Europe. 
Thirty-one deaths are directly attributed to the accident, although many groups estimate deaths 
that are due to radiation could reach into the tens of thousands.

Whilst operational risk and capital assessment are important risk management activities, the primary 
goal of operational risk management is to mitigate the risk of these high severity types of events from 
happening. However, unfortunately, they seem to occur with worrying regularity, which clearly points 
to a failing in operational risk management within these companies.

3.3	I mplications
The above discussion serves as important context for consideration of operational risk frameworks. 
One of the most critical implications is that the underlying loss generation mechanism needs to be 
considered very clearly. We define the loss-generation mechanism as the operational activity or 
production process with which an operational risk event is associated. Note that we use the term 
associated, rather than caused by, as more than one operational activity or production process may 
be the cause of a specific operational risk event (e.g., rogue trading).

When identifying, understanding, and assessing an operational risk, it is important to consider 
whether or not the loss generation mechanism is stable over time, or if it changes. If it isn’t stable and 
exhibits change, historical loss data becomes less relevant as time passes. All aspects of change, 
including process, regulation, legal environment, political environment, technology, etc., need to be 
considered here. As organisations pay more attention to operational risk management, governance, 
and compliance activities, they are able to exert better control over loss events through prevention 
and mitigation actions, which would also change the assessment of loss likelihood and severity. 
Companies also change over time. They grow in size, merge or divest business units, enter new 
markets, and restructure their organisations. The occurrence of an extreme loss, either directly or to 
a close competitor, will usually bring about large-scale changes in the way a company conducts and 
controls its business, such that the occurrence of a similar loss of equal magnitude arising again is 
greatly diminished.

In the case where the loss generation mechanism is stable, then the application of statistical 
techniques is much more robust. This is more likely to be the case for operational risks characterised 
in the low and medium frequency categories. An example of this would be highly repeatable 
activities such as payment processing errors, which tend to be stable for a given suite of systems 
and processes. The implications for risk mitigation and management would tend to focus on general 
principles and practices (and risk culture) rather than on refining detailed operational systems and 
processes, for which the marginal cost could exceed the marginal benefit.

In the case where the loss generation mechanism is unstable, then the application of statistical 
techniques can be significantly misleading. These events are much more likely to be in the medium- 
to high-severity categories. The implication for these operational risk events is that risk assessment 
becomes increasingly more difficult and uncertain. Risk mitigation needs to focus less on general 
principles and practices, and much more on the specific risk drivers of an operational activity.
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4	Ba sic indicators and 

	 standard formula approaches

The simplest method for calculating operational risk capital is the use of a single indicator as a 
proxy for operational risk. For example, a fixed percentage of gross operational income would be a 
universally applicable way of calculating operational risk capital across a wide range of companies. 
However, the limitations of such a simple approach are significant, the chief one being that it does 
not directly relate to the operational risk characteristics of each unique business, and hence is 
effectively useless in the management of operational risk.

In order to capture more of the differing risk characteristics across each firm within an industry, some 
regulatory environments introduce additional indicators and vary the capital quantity by each. Such 
approaches are called standardised approaches. Figure 6 shows examples of such basic indicator 
and standardised approaches for a range of industries and geographies.5 6 7

Figure 6: Summary of Basic Indicator and Standard Formula Approaches for Operational Risk Capital

Geography Industry Regulatory 

Scheme

Indicator Percentage

Global Banking Basel II, basic 

indicator

Gross income over those of the previous three years in 

which it had been positive.

15%.

Global Banking Basel II, 

standardised

Gross income by business lines5 over the previous three 

years (positive part).

Loans and advances amount for the retail banking and 

commercial banking business lines can be  

used alternatively.

Range from 12% to 18% by business line.

If loans and advances are used, 3.5% of them should be 

used instead of gross income (that is, before multiplication 

by the 12% to 18% factor).

European Union Insurance Solvency II BSCR, the total of all other risk capital amounts.

Earned premiums (EP).

Technical provisions (TP).

Expenses.

Complex function subject to various maximums:6

• 30% of BSCR	 • 0.45% life TP

• 4% life premiums	 • 3% nonlife TPs

• 3% nonlife premiums	 • 25% expenses

Australia Insurance APRA, LAGIC Premium income. 

Policy liabilities. 

Policy payments.

Various depending upon the class of insurance.7

Japan Insurance Statutory 

Solvency 

Requirement

Total risk (insurance + interest crediting + asset + 

guarantee lines).

3% if P&L is negative, 2% if P&L is positive.

Republic of South 

Africa (RSA)

Insurance Solvency 

Assessment 

and 

Management

BSCR, the total of all other risk capital amounts.

Earned premiums (EP).

Last year of EP growth if over 10% (GEP).

Technical provisions (TP).

Expenses for unit-linked business (other  

than commission).

25% of UL expenses plus minimum of 30% of BSCR and 

maximum of:

• Sum of: 3% of nonlife TP and 0.45% of life TP

• Sum of 3% of nonlife EP and GEP and 4% of life EP and 

GEP

Taiwan Insurance Risk-Based 

Capital

Premium income.

Assets under management (AUM).

0.5% for life business.

1% for annuity business.

1.5% for all other business.

0.25% for AUM.

Others (USA, Europe 

except EU, Other 

Asia, Russia, New 

Zealand)

Insurance None, no explicit formula exists. However, it is quite 

common to have requirements for operational risk 

management and internal control.

None.

5	 Refer to Section 8 for the categorisation of these business lines.
6	 Refer to Section 8 for the detailed operational risk formula.
7	 Refer to Section 8 for the detailed operational risk formula.
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The main benefit of this approach is that it is very simple to understand, transparent, efficient, and 
cheap to implement. However, this approach has a serious flaw in that the risk capital is not directly 
linked to actual risk exposure and mitigation drivers in the business. As a result of the numerous 
sources of production inputs, operational risks are very broad and heterogeneous across industries 
and companies, in contrast to other risk categories, such as market risk, which are significantly more 
homogeneous. This fact means that one-size-fits-all approaches to operational risk assessment 
such as the use of basic indicators and standard formulas are likely to be relatively ineffective. These 
methods also do not provide any information on the types of operational risk events, their risk profiles, 
or how to control them, and hence it does not help or incentivise good risk management processes.

Because of these limitations, regulators of industries such as banks allow their regulated entities to 
use more sophisticated methods such as the advanced measurement approach (AMA) allowed under 
Basel II. These approaches include the loss distribution approach (LDA), the scenario approach, and 
the structural modelling approach, which enable firms to tailor the models to better reflect their actual 
risk profiles. These approaches are the subject of the following sections of this paper.
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5	 Quantitative risk assessment or 

	 scenario analysis

Quantitative risk assessment (QRA), also known as scenario analysis (SA), is a fusion of the expert 
knowledge of the current and future states of the business and the environment in which it operates, 
in order to assess operational risks. The integrity and consistency of the outputs produced under this 
approach must be ensured through the use of a strong governance framework. The elements of this 
framework are:

�� Governance 
Effective governance is essential to ensure support for the process from participants and 
stakeholders, such that it has integrity, consistency, and longevity.

�� Preparation 
A clear understanding of the objectives, framework, and input requirements is needed in order for 
participants to effectively contribute to the process. Potential areas for scenarios and any relevant 
data should be sourced and prepared in advance.

�� Assessment 
This is typically undertaken through a series of workshops, interviews, or questionnaires involving 
a combination of subject matter experts, executives, risk managers, and group functions. 
Quantitative input parameters on risk severity and frequency of each scenario are required.

�� Validation 
Given the biases that may enter into the process, scenarios need to be reviewed holistically and 
challenged to ensure consistency in their framing, depth, breadth, and calibration.

�� Reporting 
Scenario results must be reported to a variety of stakeholders across various levels of the 
business, from business units all the way through to the board.

�� Evolution 
Scenarios must be updated to reflect the ongoing evolutionary process through which the 
business dynamically changes to respond to changes in the environment in which it operates

The assessment process is typically undertaken by senior managers considering a range of large to 
catastrophic scenarios that the organisation could suffer that are mostly unrelated to one another. 
Examples of such scenarios include:

�� Failure to deliver a significant operational process change program
�� Failure to recruit and retain staff of appropriate quality and in sufficient numbers
�� Failure of the loss of key infrastructure assets
�� Large fraud event

For each scenario, the relevant experts provide their opinions on the likely size of each loss, and 
how likely the losses are to occur in the next year. Ideally and where possible, they would provide 
these estimates for a few different points on the likelihood and severity distributions, in order for the 
distributions to be calibrated. In undertaking this, they would need to consider questions such as 
what controls would have to fail for a loss event to occur, and whether such failures have happened 
before and during their working lifetimes, as well as the lifetime of the organisation.

An alternative scorecard approach could also be used, such that participants rate or rank each 
scenario representing a defined loss severity and frequency and its key risk indicators. Weights 
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would then be determined based upon historical data or expert opinion to aggregate the scores, 
which would then be reflected in actual distributions.

Consideration of business environment and internal control factors (BEICFs) can assist the 
assessment process in making estimates that are more relevant to the current residual risk profile 
of the organisation, as reflected by their inclusion in specific scenarios. These scenarios can also 
be expressed directly in terms of likelihood and severity outcomes. The use of such information 
provides a mechanism to link the top-down requirements to measure operational risk and capital 
with bottom-up business drivers, thus providing a framework for linking risk measurement with risk 
management.

Consider the following example of 26 independent scenarios, each with their own severity and 
likelihood estimates, which is illustrated in Figure 7.

Figure 7: Example Scenarios with Severity and Likelihood Estimates

	S cenario	 severity	L ikelihood	S cenario	 severity	L ikelihood

		  (m)	 (p.a.)		  (m)	 (p.a.)

	 1	 5	 5.00%	 14	 75	 0.25%

	 2	 10	 1.00%	 15	 30	 0.50%

	 3	 1	 3.00%	 16	 20	 5.00%

	 4	 10	 1.00%	 17	 20	 5.00%

	 5	 10	 1.00%	 18	 10	 5.00%

	 6	 10	 5.00%	 19	 3	 2.00%

	 7	 20	 5.00%	 20	 5	 1.00%

	 8	 5	 5.00%	 21	 2	 1.00%

	 9	 5	 5.00%	 22	 2	 5.00%

	 10	 30	 0.50%	 23	 1	 5.00%

	 11	 25	 0.25%	 24	 1.5	 5.00%

	 12	 75	 0.10%	 25	 25	 10.00%

	 13	 10	 0.10%	 26	 25	 10.00%
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Assuming that all these scenarios are independent, then we can use a generalised binomial 
distribution to estimate the annual loss distribution for any and all combinations of the above events 
occurring. Figure 8 shows the cumulative distribution function of annual losses.

Figure 8: Cumulative Distribution Function of Annual Losses

From the above distribution it is possible to calculate the tail loss amount, such as 70m at the 99.5th 
percentile level. It is also possible to introduce scenario interdependence through the application of 
correlation and copula techniques.8

The benefit of this approach is that it is forward-looking and hence likely to be adapted to the 
evolving dynamics of an organisation. It is also transparent and thus easy to understand in that risk 
exposures are tied to the qualitative information provided by management.

However, there are a number of challenges and limitations with this approach. These include:

�� Bias in scenario selection: It is difficult to know where to draw the line in judging how many and 
what types of scenarios should be included in the assessment.

�� Quality of information gathered: Humans are typically very poor at assessing the severity and 
frequency of risks, particularly high severity low frequency risks which they may never have 
experienced. This is particularly acute for operational risk capital for banks, which needs to be set 
at a level to withstand a 1-in-1,000-year event—how is anyone ever meant to be able to understand 
what such an event might look like given 40-year average working lifetimes?

�� Allowance for complexity: Humans are also generally very poor at resolving the complexity of the 
interactions that characterise complex scenarios and hence may miss sources of operational loss, 
such as those arising from negatively reinforcing feedback loops.

�� Difficulty in aggregation: Assessing the interdependencies between the scenarios can be very 
challenging, as they are typically framed individually.

�� Lack of allowance for uncertainty: Use of point estimates overstates the degree of uncertainty 
associated with the scenarios.

8	 Refer to Section 6 for more details.
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6	S tatistical models: Loss distribution approach

The loss distribution approach (LDA) is a popular statistical approach for computing aggregate loss 
distributions. In this section, we define the underlying mathematical modelling framework and provide 
some of the typical algorithms to compute loss distributions. We also discuss the pros and cons of 
this method.

LDA is a commonly used approach to quantify operational risk, where the severity and frequency  
of operational risk losses are considered and modelled separately. Once they have been calculated, 
the aggregate loss distribution can be generated by combining them through Monte Carlo  
simulation techniques.

6.1	D ata sources for calibration
Sourcing data in order to calibrate the distributions using an LDA approach is the first step in the 
assessment process. There are broadly four categories of data that can be used for this purpose. 
The Basel II banking accord requires all four of these data sources to be utilised for banks wishing to 
obtain regulatory approval for use of an advanced measurement approach (AMA) for operational risk 
capital assessment, of which LDA is an approved method. The four data categories are:

�� Internal loss data (ILD): This is data on an organisation’s actual operational loss experience. 
Because ILD is usually very limited for high-severity, low-frequency loss events, it is necessary 
in order to assess the tail of the distributions to consider the alternative data sources, which 
produces meaningful estimates of capital requirements. Consideration should be given to the 
length of history for which ILD is appropriate to use, given potential changes in an organisation’s 
operational process, risk control process, and risk appetite levels.

�� External loss data (ELD): This is data on the actual operational loss experience of other organisations. 
ELD is an essential data source for high-severity, low-frequency events which the organisation under 
consideration may not have experienced. Such databases are selectively available by industry, such as the 
ORX database, which contains operational risk losses for global banks.9 ELD may also have additional 
uses, for example in assessing the riskiness of new business lines, in benchmarking analysis, or in 
estimating competitors’/industry loss experience. Whilst ELD can be very useful, there is a risk that it may 
not appropriately reflect the risk profile of a given organisation because of reporting bias or uniqueness, 
and hence particular care must be used with this data source.

�� Business environment and internal control factors (BEICFs): BEICFs are factors that capture 
a specific aspect of the risk associated with an organisation’s operational process. They may 
be operational risk management indicators that provide forward-looking assessments of internal 
and external operational risk factors as well as risk controls. Incorporating BEICFs directly into 
models has traditionally presented challenges given their subjectivity, although techniques such as 
Bayesian methods have increasingly been used for this purpose successfully.

�� Scenarios analysis (SA): As outlined in Section 5, SA is a fusion of the expert knowledge of the 
current and future states of the business and the environment in which it operates, in order to 
assess operational risks.

6.2	E vent type segmentation
Operational loss assessment is typically undertaken on a more granular basis than at the total level. 
This is because most organisations have a multitude of operational activities which involve many 
different types of input resources, business lines, processes, and product types, each of which 
can give rise to different types of operational events. Hence it is common for the framework to 
segment losses into as many homogeneous categories as is practical, given the constraints on data 
availability, data quality and the resources available to undertake the assessment process.

9	 See the ORX Association website at http://www.orx.org. 
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By way of example, Figure 9 outlines the risk event types in the ORX database for the global banking 
industry. Such event types are used to identify the nature of the cause of the loss, for each separate 
business line.

Figure 9: Operational Risk Event Types

Risk Type Examples

Internal fraud Unauthorised activity; internal theft and fraud; system security internal – wilful damage

External fraud External theft and fraud; system security internal – wilful damage

Employment practices and 

workplace safety

Employee relations; safe workplace environment; employment diversity  

and discrimination

Clients, products, and 

business practices

Suitability, disclosure, and fiduciary; improper business or market practices; product flaws; 

selection, sponsorship, and exposure; advisory activities

Disasters and  

public safety

Natural disasters and other events; accidents and public safety; wilful damage  

and terrorism

Technology and 

infrastructure failures

Power outage, network failure

Execution, delivery, and 

process management

Transaction capture, execution and maintenance; monitoring and reporting; customer intake and 

documentation; customer/client account management

Malicious damage Vandalism

Another analogy is also pertinent here. In the health industry, the cause of death is often classified by 
what finally killed someone. However, unless the medical notes are very complete, most of the time 
this isn’t very informative. The taxonomy of classifiers is meant to be a cause of death, but in reality 
it is only the very final straw and it makes no real sense to classify according to that. For example, a 
person with HIV who dies because of influenza. It would make infinitely more sense to focus more on 
symptoms, underlying conditions, or previous ailments that lead to death rather than the final nail.

Loss severity and frequency distributions would then be derived for each of the above risk event 
type categories.

6.3	 Loss severity

6.3.1	 Choice of distribution
Loss severity is the variable that measures the economic impact of a risk when it occurs. It is assumed 
that losses are independent and identically distributed according to some statistical distribution. 
Dutta and Perry (2007) suggest that the criteria that should be used when assessing the suitability of 
a particular distribution include:10

�� Realistic: The distribution must reflect the actual nature of the underlying loss process. If the 
underlying process isn’t stable or is adaptive in nature, then the LDA approach will be highly 
flawed from the outset.

�� Well-specified: The distribution must be able to be meaningfully calibrated.

�� Flexible: The distribution must be sufficiently flexible to deal with a number of alternative shapes.

�� Simple: The distribution must be simple to use and not be more complex than is necessary.

10	 Some general principles on appropriate choice of severity distributions can be found in the Basel Operational Risk – 
Supervisory Guidelines for the AMA. 
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The loss severity distribution should not be arbitrarily chosen based only on data fitting, but rather 
it should be derived using robust statistical theory. For example, Peak Over Threshold theory11 and 
Extreme Values theory12 show that under certain hypotheses variables converge to one particular 
distribution: the generalised Pareto distribution (GPD).

In general, loss severity can be modelled as a variable with positive real values, with a probability 
concentrated on zero for events that don’t generate losses. The biggest concern when selecting 
the distribution is whether to use a light-, medium-, or heavy-tailed distribution, because this choice 
affects the final outcome dramatically. The most frequently used distributions to model severity are 
the lognormal, Pareto, gamma, and Weibull distributions. In addition, empirical distributions or splines 
are sometimes used.13 Figures 10-13 outline the distribution probability density function (pdf) and 
graphs of calibrations of each of these distributions.

	 1	 (lnx – μ)2

ƒ(x; µ, σ) = ————— e     2σ2

	 xσ√2π

Figure 10: Lognormal Distribution PDF and Sample Distributions
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Figure 111: Pareto Distribution PDF and Sample Distributions 
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Figure 212: Gamma Distribution PDF and Sample Distributions 
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11	 Refer McNeil et al. (1997).
12	 Refer Embrechts et al. (1997).
13	 Refer Operational Risk – Supervisory Guidelines for the AMA, BIS, June 2011, paragraphs: 194 and 193-208.
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Figure 11: Pareto Distribution PDF and Sample Distributions
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Figure 212: Gamma Distribution PDF and Sample Distributions 
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Figure 12: Gamma Distribution PDF and Sample Distributions
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Figure 13: Weibull Distribution PDF and Sample Distributions
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Figure 313: Weibull Distribution PDF and Sample Distributions 
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6.3.2	 Distribution segmentation
Distribution fitting to derive the loss severity distribution can be made using two or sometimes three 
different distributions to cover the low-, medium-, and high-severity losses. In this case, one or two 
thresholds are chosen and the distribution is defined and calibrated uniquely in each segment. This 
can enable more accurate fitting, but the final outcome should not be too sensitive to the choice of 
thresholds as that choice can be quite subjective. This technique is based upon the assumption that 
events are more appropriately modelled if they are grouped into multiple severity buckets.

This approach can be useful in capturing differences in the underlying nature of the operational 
loss process we are attempting to model. Low-severity, high-frequency events will be typical 
of an operational process that is relatively stable and involves a large number of independent 
homogeneous events. For this type of risk, high-quality loss data is typically available, and the use of 
normal and lognormal severity distributions can be appropriate.

At the other extreme, high-severity, low-frequency events will be typical of an operational process that 
is not stable, as it may be quite unique or new to the organisation, and that may involve a number 
of different types of control events simultaneously failing across multiple interconnected activities. 
Derivative losses by rogue traders are a good example. In this case, the use of a generalised Pareto 
distribution can be appropriate given the large uncertainties involved.

In between the two extremes, medium-severity, medium-frequency events will be typical of 
operational processes that, whilst they may not be highly repeatable, are relatively well understood 
and for which data in one form or another is available if judiciously used. In this case, the use of 
lognormal, gamma, and Weibull distributions is appropriate.

According to the Bank of International Settlements, which conducted a survey published in June 
2011, the range of practice for AMA banks in operational loss severity modelling varies significantly: 
31% of AMA banks used a single distribution for the entire curve, and nearly 50% used two separate 
distributions for the body—or high-frequency, low-impact (HFLI) region—and the tail, or low-frequency, 
high-impact (LFHI) region.
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Loss severity distribution estimation is a key element in the LDA framework, and particular care must 
be taken in the truncation threshold if a piecewise segmentation approach is used. The threshold of 
truncation should be considered and estimated at the same time with the other parameters of the 
distributions, using statistical data fitting methods.

6.4	 Loss frequency
Loss frequency (or likelihood) is the variable that measures how many times in a certain period a 
risk occurs. The time period typically considered is one year. The standard assumption is that the 
frequency of losses are independent and identically distributed according to a given distribution. By 
its nature this is a discrete variable, requiring a discrete distribution to estimate it. In general, every 
discrete distribution with values greater than or equal to zero could be used. However, common 
practice shows that the most popular distributions used are the Poisson and the negative binomial. 
Modifications of these distributions can also be used, for example compound and mixed distributions, 
as well as zero-modified and zero-truncated ones.14 Figures 14 and 15 outline the distribution 
probability density function and graphs of calibrations of each of these distributions.
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Figure 14: Poisson Distribution PDF and Sample Distributions 
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Figure 414: Poisson Distribution PDF and Sample Distributions 
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Figure 515: Negative Binomial Distribution PDF and Sample Distributions 
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14	  Refer Chapter 6 of Klugman et al. (2008).
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Figure 15: Negative Binomial Distribution PDF and Sample Distributions
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Figure 414: Poisson Distribution PDF and Sample Distributions 
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The fitting of the loss frequency distribution proceeds similarly to that of the loss severity distribution, 
based upon whatever data sources are appropriate and available.

6.5	 Loss interrelationships
Interrelationships and dependence across the various elements of the loss assessment process may 
arise from exposure to common operational process elements or structural factors (e.g., people, 
businesses, processes, IT systems) or from environmental factors (e.g., a change in legal risk 
associated with certain business practices), both of which affect multiple areas of the firm. These 
factors can influence the observed frequency or severity of losses. However, the choice of approach 
for incorporating dependent interrelationships can have a significant impact on the results of the 
assessment process.

Dependence assumptions should be supported to the greatest extent possible by an appropriate 
combination of empirical data analysis and expert judgment. It is important to recognise that using 
internal and external data to model dependence presents challenges, as data limitations observed in 
the univariate context are likely to be more significant in the multivariate context. Using judgment to 
model dependence presents its own challenges, as eliciting accurate but subjective estimates can 
be more difficult in the multivariate context than in the univariate context. As such, the specification of 
dependence structures represents one of the most significant challenges in modelling operational risk.

Assumptions regarding dependence should preferably err on the conservative side, given the 
significant uncertainties. Consequently, the dependence methods considered should not be limited 
to those based on normal or normal-like distributions (e.g., Student’s t-distributions with many 
degrees of freedom), as normality may underestimate the amount of dependence between tail 
events. The two most common methods for modelling dependence are correlations and copulas.
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6.5.1	 Correlations
Correlation is a measure of the degree of the linear relationship between two variables.15 Note that 
this relationship is not directional in nature, and hence cannot be interpreted as a causal relationship: 
Correlation does not imply causation!

Under this approach, a decision needs to be made as to the structure of aggregation via correlation. 
Aggregation of the severity and frequency distributions for each risk event type and business line 
segment occurs via Monte Carlo simulation. This is the current approach typically used by AMA 
banking organisations, making the simplifying assumption of independence between severity and 
frequency distributions. The operational loss distribution for the entire organisation is then derived 
based upon the application of a correlation matrix covering each segment’s loss distribution.

Alternative aggregation approaches could also be used whereby correlations are applied separately 
to severity and frequency distributions across the risk event or business line dimensions first, 
before then aggregating frequency and severity distributions together at a total level. The choice 
of structural method to use will depend upon the quality and sufficiency of data, the homogeneity 
of risk event types across business lines, and the nature of dependence between these elements. 
For example, there will be cases where the independence assumption between loss severity and 
frequency clearly does not hold, such as where poor compliance practices may lead to an increase 
in both the likelihood of fraud occurring, as well as the potential size of fraudulent losses. If this 
is considered material, then it should be reflected in the use of a correlation assumption and the 
aggregation structure.

6.5.2	 Copulas

6.5.2.1	Overview
In cases where two variables exhibit more complex interrelationships than simple linear dependence, 
then a different approach is warranted. The use of copulas is one method that can account for 
nonlinear dependence in the tails of the marginal distributions of two variables.

From a mathematical point of view, a copula can be defined as a cumulative n-dimensional density 
function C, with standard uniform marginal distributions. Sklar’s theorem states the following:

Let F(x1, …, xn) be a joint distribution with marginal functions F(x1), …., F(xn). Then there exists a 
function C:[0, 1]n → [0, 1] such that:

F(x1, …, xn) = C(F1(x1), …, Fn(xn)

All continuous multivariate distribution functions contain a unique copula and that copula may 
be used in conjunction with univariate distribution functions to construct multivariate distribution 
functions. The following three properties must hold for this:

1. C(u1, …, un) is increasing in each component ui
2. C(1, …, 1, u1, 1, …, 1) = ui is the marginal function of Ci for each ui ∈ [0,1]
3. C is always nonnegative

A useful corollary derived from the uniqueness has the representation:

C(u1, …, un) = F(F1
–1(u1), …, Fn

–1(un)

Copulas provide the user with flexibility in that they allow the fitting of any marginal distribution 
to different random variables, and these distributions may differ from one to another. Any joint 
distribution function can then be fitted (i.e., the copula across the marginal ones). Traditional methods 

15	 Technically, this refers to the Pearson correlation coefficient.
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of multivariate distributions require that all random variables have the same marginal distributions. If 
a multivariate normal distribution is fitted across a set of random variables, then we are forced to fit 
univariate normalised distributions to each of the marginal distributions. This yields to the definition 
of implicit copulas, such as the elliptical Gaussian copula, where the marginal distributions and 
multivariate distribution all follow the normal distribution:

Cρ
Ga = ϕρ(ϕ–1(u1), …, ϕ–1(un)

where:
ϕ is Normal distribution
ρ is the correlation matrix

This is unsatisfactory when aggregating across different risks. Instead, copulas allow a much wider 
range of possible dependence structures. This allows the building of non-elliptical models using the 
implicit copulas mentioned above for the dependence structure and combining them with arbitrary 
margin distribution:

Fmeta-Ga(x1, …, xn) = CGa(F1(x1), …, Fn(xn)

If x1, x2, …, xn represent losses that are due to different types of risk, then F(x1), F(x2), …., F(xn) 
are arbitrary marginal functions (i.e., they are not limited to the normal distribution functions). The 
simulation of a copula dependence structure is best suited to aggregate different risk types. The 
shape of the marginal distributions of risks is not restricted to a specific form but can assume 
whichever one best represents the behaviour of the risk factors.

6.5.2.2	Types of copulas
A wide choice of copulas exists. The most commonly used are the Gaussian copula for linear 
correlation, the t-copula, the Archimedean copula for dependence in the tail, and the Gumbel 
copula for extreme distributions. These copulas are also known as parametric copulas as they 
have distributional assumptions. Nonparametric copulas have the advantage of not making any 
assumptions about the nature of empirical distribution functions. 

However, the downside is that they require a large amount of data to calibrate, and are extremely 
computationally intensive to process. There are dimensionality problems inherent in these types 
of approaches and a smoothing method is required for the hypercube. The robustness of these 
techniques needs to be tested in each situation. There can also be poor behaviour in the tails of 
the distribution in situations where not much data exists, such as for high severity operational loss 
events.

6.5.2.2.1	Gaussian copula
The process of obtaining the aggregate distributions through a Gaussian copula is described below:

�� Generate independent normal random numbers Z
�� These random numbers are correlated through the correlation matrix, using the Cholesky 

decomposition, A, of matrix R, i.e., set x = Az
�� Calculate the normal cumulative probabilities . The vector ui = ϕ(xi), i= 1, …., n is a random variate 
from the n-dimensional Gaussian copula Cρ

Ga(u)
�� The xi (i.e., the loss of risk i) is determined by inverting the marginal distributions Fi: xi = Fi

–1(ui)
�� Iterating this process and adding the losses xi the whole integrated distribution can be calculated
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Figure 16 illustrates the distribution of a Gaussian copula.

Figure 16: Bivariate Gaussian Copula Distributions With Rho = 0.6
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The advantage of the Gaussian copula is that, because of its familiarity, it is relatively simple to 
model. But the disadvantage is that operational loss datasets typically do not exhibit symmetry or 
exponentially decaying tail behaviour. Hence the normal distribution approximation may severely 
underestimate the loss experience in the tails.

6.5.2.2.2	  Student’s t-copula
The t-copula displays heavier tails in comparison to the normal copula, with polynomial decay at 
the tails which are better able to capture fat-tailed operational loss events. It has the advantage 
that it is similar to the familiar Gaussian copula, but it has an extra parameter to control the tail 
dependency, which is the degree of freedom. Unlike the Gaussian structure where dependence 
is captured only via correlation, the t-dependence structure retains the use of correlation while 
introducing a single additional parameter, the degrees of freedom that determines the potential for 
extreme co-movements. In particular, increasing the value of the degrees of freedom decreases the 
tendency of the underlying distributions to exhibit extreme co-movements. A low value of the degrees 
of freedom gives high dependency at the tails and independence in the middle, whereas a t-copula 
with high degrees of freedom will behave like a Gaussian copula. However, the downside is that the 
t-copula still maintains the hypothesis of symmetry, even when the data may be asymmetric.

To simulate from a meta-t distribution, with v degrees of freedom, the procedure is similar to the 
meta-Gaussian copula described above. In addition, we need to simulate an additional random 
variable y from the  distribution, which is independent from vector X, and use the transformation  
Z y X = ν to derive t-distributed random numbers. The arguments of Cρ

Students's t (u) are thus obtained 
calculating the t-cumulative probabilities t(Z). 
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Figure 17 illustrates the distribution of a Student’s t-copula.

Figure 17: Bivariate Student’s T-Copula Distribution With Rho = 0.6 and ni=4
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6.5.2.2.3	  Archimedean copula
Archimedean copulas are a popular type of copula as they are able to model dependence in 
arbitrarily high dimensions through the use of only one parameter, which governs the strength of the 
dependence. An Archimedean copula can be written in the following form:

C(u1, …, un) = ψ–1(ψ(u1), …, ψ(un)

for all 0 ≤ u1, … ,un ≤ 1 and where ψ is a function called the generator, satisfying the  
following properties:

ψ(1) = 0
for all t ∈ [0,1], ψ‘(t) < 0, i.e., ψ has a negative first order derivative , it is decreasing
for all t ∈ [0,1], ψ‘‘(t) ≥ 0, i.e., ψ  has a non-negative second order derivative, it is convex

The Gumbel copula described below is an example of an Archimedean bivariate copula:

ψ(t) = (– lnt)α, α ≥1: C(u1, u2) = exp{ –[(– lnu1)α + (– lnu2)α] 1/α}

The Gumbel copula is the most popular copula for extreme distributions. However, although 
Archimedean copulas are simple to model for bivariate cases, the modelling requirements are 
complex for multivariate cases. Its difficulty is also made worse as the inverse generators do not exist 
for certain Archimedean copulas.

6.5.2.3	Choosing a copula
Where a copula approach can be justified because of the existence of material nonlinear 
dependence, the general approach would be to use the simplest copula that is able to appropriately 
capture the nonlinearity. This is because the more complex the copula, the greater the challenge in 
obtaining an accurate and robust calibration.
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There is some evidence to suggest that the use of Student’s t-copulas are appropriate for modelling 
correlated extreme events for economic capital purposes,16 but significant effort may be required to 
assess the alternatives, which may be unique to the organisation and data available.

The main challenge with using a copula is that a very large amount of data is required in order to 
determine a robust calibration. This can be orders of magnitude larger that the datasets that are 
currently available for operational risk.

6.6	 Aggregation and capital assessment

6.6.1	 Aggregation
With an LDA, the total operational losses can be modelled as the sum of individual losses generated 
by all operational loss events over a given time period (typically one year). Formally:

	 Ni

Si = ∑ Xi,j
j=1

where: 

Si are the aggregated losses for the ith segmented risk category (e.g., by event type and/or  
business line)

Xi,j is the amount of the losses of a single event of the ith segmented risk (i.e., severity)

Ni is the number of events that occurred over the time period (i.e., frequency)

Total operational losses S can therefore be expressed as:

	 k
S = ∑ Si

	 i=1

where: 	 k is the total number of segmented risk categories/groups

To calculate the distribution for total losses for a single segmented risk category Si, the following 
assumptions must be made:

1. Conditional on Ni=ni, the random variables X1, X2, …, Xni are independent and identically distributed.
2. Conditional on Ni=ni, the common distribution of the variables X1, X2, …, Xni does not depend on ni.
3. The distribution of Ni does not depend in any way on the values of X1, X2, …, Xni.

Generally, an analytical formula can’t be derived for Si, so computational techniques are required 
in order to undertake the convolution of the distributions. Several methods are illustrated in the 
literature, but the most widely used is Monte Carlo simulation. The simulation process can be 
summarised in the following four steps:

1. Build a model for S that depends only on random variables Xij, Ni where their distributions and any 
dependencies are known.

2. For k=0,…,m, generate pseudorandom values of frequency ni, and then for j=1, …, ni generate 
severity values xij and compute Si using the model of Step 1.

16	 Refer Cornaglia et al. (2007).
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3. The cumulative distribution function of Si may be approximated by Fn(i)(si), the empirical cumulated 
distribution function based on the pseudorandom samples s1,…,sn(i).

4. Compute the statistical results of interests using the empirical cumulative distribution function.

To compute the total losses, the distribution for all the risk category quintiles are generated from the 
correlation/copula and transformed by inverting the marginal distribution (i.e., single risk distribution).

The final outcome of the LDA is a set of pseudorandom data from the compound distribution of the 
total losses, obtained by the estimated marginal distributions with estimated dependence modelled 
by the copula (i.e., for each simulation, a vector with generic element equal to the total loss over the 
time horizon; e.g., one year) of the ith risk category and length equal to the number of risk categories. 
From this data an empirical cumulated distribution function is obtained based on the empirical 
frequency of data.

From a process perspective, the main elements of implementing an LDA approach are summarised in 
Figure 18.

Figure 18: LDA Implementation Process

The calibration of each distribution needs to be validated with a statistical test. The items marked 
with an asterisk (*) in Figure 18 need to pass a validation process. This will ensure that the 
distributions used are appropriately calibrated to the available data.

6.6.2	 Capital assessment
The cumulative distribution function calculated using the above process can be used to  
determine a number of risk statistics, which can be considered as appropriate for the purposes of 
economic capital.

In both Basel II and Solvency II regimes, economic capital is a risk measure based on a Value at 
Risk (VaR) statistic. Under Basel II this is set at the 99.9th percentile level of the total annual loss 
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distribution (i.e., 1-in-1,000-year event), whilst under Solvency II it is set at the 99.5th17 percentile 
level of the total annual loss distribution (i.e., 1-in-200-year event).

Whilst VaR measures have had much use as risk measures in finance, it is important to note that it is 
not a coherent risk measure. Coherent risk measures must have the following desirable properties:

�� Monotonicity: If A always has better outcomes than B, then the risk of A should be less than B.

�� Sub-additivity: If two risks are added together, their combined risk cannot be any greater than the 
sum of the two risks separately. This is the principle of diversification.

�� Homogeneity: The application of a scalar factor to the underlying variable should similarly scale 
the risk measure.

�� Translational invariance: Adding a risk-free element to the variable reduces risk by the  
same amount

If a risk measure isn’t coherent, and when distributions are highly skewed, heavy-tailed, or far from 
normality, problems can arise such as negative diversification benefits. For example, say the VaR 
from each independent source A and B is 100 and 50, respectively. But when combined into A + B, 
the VaR could be 200. The non-sub-additivity effect is also emphasised by some distributions with 
heavy right tail asymmetries, such as the lognormal (discussed above), which is also one of the most 
commonly used distributions to model severity.

In the ORX database of global operational banking losses, Cope et al. (2009) observed that losses 
in different business lines are often quite variable in terms of both frequency and severity. For 
example, in retail banking, losses are more frequent but loss amounts rarely exceed EUR 1 million, 
whilst in corporate banking, losses are very rare but can be as high as hundreds of millions or billions 
of euros. So a high severity low frequency loss category will be modelled using few data points, 
resulting in extremely large expected losses that are also extremely uncertain. As economic capital 
measures are high quantile measures (e.g., 99.9th percentile VaR), they are effectively dominated by 
the highly uncertain measurements of high severity low frequency types of events.

The main reason for the adoption of VaR measures is that no perfect alternative exists. Whilst the 
conditional tail expectation (CTE, also known as TailVaR) is a sub-additive measure, it is highly 
dependent upon the very extremes of the tail distribution, and cannot be easily interpreted as a 
1-in-n-year event, unlike VaR. Use of CTE measures requires a high degree of modelling certainty in 
the extremes of the tail, which is typically not the case with operational risk, where there is a paucity 
of data in tails to calibrate to.

6.7	 Advantages and limitations of an LDA
The advantages of an LDA approach include:

�� The use of well-known statistical distributions can aid the calibration process.

�� Splitting losses into frequency and severity components can enable more accurate assessments 
of these drivers, which are typically characterised by different statistical processes. It can also give 
a better understanding of the nature of the losses.

�� The impact of risk control mechanisms, such as deductibles and insurance, can be readily included.

�� Building, implementing, validating, and operating an LDA model does not require large 
computational resources.

17	 Based on QIS 5, which is current as at the date of this publication.
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�� It is reasonably flexible as it can adapt to new and evolving business operations, and it can be 
extended to multiyear periods.

The limitations of an LDA approach include:

�� It requires stable underlying processes and relationship structures that are simple and relatively 
linear. Where processes are adaptive and interrelationships complex and nonlinear, then statistical 
approaches can be highly flawed.

�� It is heavily dependent upon sufficiently credible calibration data. In the absence of this, the 
credibility of results deteriorates significantly. This is particularly relevant for the material high 
severity low frequency events, and for new organisations with little to no history of data, or with 
new types of operational processes and controls.

�� Statistical approaches rely on the underlying assumption that the nature of the underlying process 
is stable. This may not be the case for organisations where operational activities are changing, 
becoming more or less risky in the process.

�� The integration of internal data, external data, scenario analysis, and expert judgment in the 
framework can be challenging.

�� Results can be very sensitive to the range of difficult subjective choices that need to be  
made around:

−− Segmentation of data into homogeneous risk categories
−− Segmentation of the loss curves into high/medium/low-severity/frequency classes
−− Methods to capture and model dependencies

�� The typical assumption of independence between frequency and severity distributions is a major 
limitation. The use of copulas and/or correlations between different segments of the curves can be 
equally difficult to calibrate.

�� It is difficult to relate results back to the states of business drivers, which creates challenges in the 
communication and engagement of the business with the model.

There is a range of research on the use of LDA to the modelling of operational risk in the banking 
industry. Moscadelli (2004) and Evans et al. (2007) found that, because of the highly skewed nature 
of operational loss data, conventional frequency and severity models used in LDA are unable to 
provide adequate results in describing the loss data, particularly in the extreme percentiles. Cope 
et al. (2009) concluded that actual operational risk capital estimates should be handled with care, 
which is due to the instability of estimates and the sensitivity of results to extreme data points.

From an experience perspective, many banks had AMA approval for LDA models over the period 
of the global financial crisis of 2008 and beyond. What was found was that the level of operational 
risk capital was relatively insensitive to these conditions as they occurred, which clearly didn’t make 
sense when many banks suffered significant operational failures.
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7	S tructural or causal approaches

7.1	I ntroduction
A structural modelling framework conditions loss outcomes upon the states of underlying  
business drivers that cause those events to occur. Hence they are also synonymously referred to  
as causal models.

This framework synthesises a range of methods that have been developed and successfully used in 
the science of complex adaptive systems. The underlying structure of the framework is based upon 
an assessment of the system to which it relates. By system, we don’t mean an IT system, but rather 
the complex system that relates operational outcomes to the important business drivers and risk 
factors upon which they depend. By incorporating directly the business drivers into the modelling 
framework, it is possible to clearly explain how loss outcomes are driven by the states in which 
business drivers can exist.

The broad process that is used to construct a structural operational modelling framework includes:

1. Eliciting the system structure that drives operational risk events.
2. Identifying the most critical business drivers and risk factors within this system.
3. Determining the appropriate states of business drivers and risk factors.
4. Defining the causal relationships across business drivers, risk factors, and outcomes.
5. Aggregation of operational risk elements.
6. Analysis and usage.

We will step through each of these processes in turn in the following subsections. Case studies are 
provided in the appendices which outline tangible examples of this approach.

7.2	E liciting the system structure
Traditional operational risk management frameworks have been highly abstract, which has caused 
problems engaging with the people who spend most of their time working in an operational 
environment. Such nonspecialists in risk typically find risk management concepts very difficult to 
understand as they are very different from the concepts they deal with on a daily basis. In order 
to gain traction and engagement with these key groups so that we can leverage their expertise 
and knowledge, it is critical that the language that operational risk frameworks and risk models are 
couched in is that of the business.

In order to achieve this, we start holistically assessing the systems structure of a business and its 
operations through the use of cognitive mapping techniques. Cognitive mapping was developed in 
the early 1990s based upon George Kelly’s theory of personal constructs. Essentially this theory 
suggests that people attempt to make sense of the world in order to predict what the future state  
of the world will be, and therefore decide how to act now in order to achieve the outcomes they 
desire. Early pioneers of the cognitive mapping technique were Fran Ackermann, Colin Eden, and 
Steve Cropper.

Essentially, cognitive mapping involves breaking down an account of a problem into its constituent 
elements. These are the distinct concepts which are connected to visually represent the narrative of 
the problem. This nonlinear representation of the narrative is the first step in making the underlying 
complexity of a business or an operational system transparent. The sense of hierarchy is important  
in constructing these stories and involves identifying which parts of the story lead to other parts of 
the story.

If you imagine a group of friends going to watch a film at the cinema and then comparing notes 
afterwards to discuss interesting parts of the film, each person will remember slightly different details. 
If you use a cognitive map to represent each piece that a friend recalls and the manner in which that 



Milliman  
Research Report

36Operational risk modelling framework
Joshua Corrigan and Paola Luraschi

February 2013

piece connects to the others, then you will rapidly be able to reconstruct the entire movie, with all its 
subtle features, as a cognitive map.

One key feature of a good cognitive map is the ability to identify goals. These provide a natural end 
for the stories and give us an indicator about whether a particular element of the story has reached 
its conclusion or whether some of the detail has been missed.

Although the picture in Figure 19 is intentionally too small to read the individual elements, it shows 
how a cognitive map can become quite complex as a story is told.18

Figure 19: Example of Cognitive Map

In this format we are able to apply mathematical techniques from graph theory to identify the parts of 
the map which seem to be particularly connected to the rest of the picture. This might mean that lots 
of other concepts are instantly linked to them, or that they connect over a greater distance. In either 
case we can be sure that, for some reason, these concepts matter to the story being told.

It is also possible to identify which story beginnings most often lead to these key story elements. 
Such concepts are clearly important as spotting evidence of their occurrence would give us a clue 
that one of the important parts of the story might happen later. In the context of an operational risk 
scenario, these events are the emerging risk signals that we want to watch for.

We can also spot holes in stories. If something jumps uncomfortably from an early stage in a story to 
a later stage, we would find that incompleteness and ask whether we can fill in the missing details. 
This could represent a lack of understanding about how a particular scenario might emerge or 
missing information about how different factors interact to produce a particular outcome. Either way 
it suggests an area for further investigation.

It is also possible to identify some of the dynamic behaviours in a story. Where one thing leads to 
another, which leads to another, which leads back to the first thing, we end up with forces working to 
keep something in balance or tending to push things out of control. Understanding such dynamics is 
critical to understanding how risks may propagate and potentially be controlled or avoided.

18	 Cognitive maps produced by Milliman using Banxia Decision Explorer software.
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The use of this technique can be particularly powerful when undertaken across a number of 
individuals and business silos. This is because concepts and causal links which are correct are 
more likely to be reinforced by others than those that are not. Hence, as the process is repeated, 
different perspectives are integrated and the map will tend to reflect the common set of perspectives 
more than those that are wrong or incomplete. This is the mechanism through which individual bias 
is reduced dramatically. Like any model, it is trying to capture what is most important rather than 
everything, and the 80/20, or 90/10, rule strongly applies in this process.

Cognitive mapping therefore presents a powerful tool for combining the insights of a diverse group of 
experts into a holistic overview of a complex situation such as a business operation. Careful analysis 
permits the removal of significant amounts of cognitive bias or other diversionary contributions in 
the interviews so that the final outcome is close to the underlying reality of the system dynamics as 
understood by the experts.

Using this technique enables all the relevant concepts that influence an operational activity, 
production process, or operational risk scenario to be elicited. These concepts would include all of 
the following:

�� Business objectives such as return on equity (ROE) and growth target, customer satisfaction 
levels, social responsibility

�� Business drivers (or business environment factors) such as the quality of processes, 
effectiveness of systems, culture, the availability of quality people and capital resources

�� Outcomes and impacts such as sources of financial loss, damage to capital resources, accidents 
to staff, damage to societal resources such as the environment

�� Risk factors such as economic and capital market variables, physical environmental conditions, 
safety standards and practices

�� Internal control factors such as quality of audit process, effectiveness and maturity of 
governance, appropriateness of systems, process controls, adequacy of staff training, segregation 
of duties, documentation requirements

7.3	I dentifying the most important components of the system
Most cognitive maps that are developed are highly complex, containing a large number of concepts 
and a tangled web of causal relationships. Most people, when faced with this information, look to 
simplify this complexity. But such reductionist approaches tend to destroy most of the information 
value within a map. Instead, the challenge is to elicit the most important structures and dynamics of 
the cognitive map, retaining the complexity and information content in the process. In order to do 
this, we use graph theory to analyse the map as a network.

Like any network, we want to understand its structure and, most importantly, identify the most 
connected concepts. Highly connected concepts are central to the story. From an operational risk 
perspective, they represent business drivers that are central to the functioning of an operational 
activity. An example of this might be the various dimensions to the effectiveness of communication 
(i.e., information transfer), whether it is between systems, people, or businesses. Graph theory is 
readily able to identify these concepts objectively using a range of measures of connectedness, 
including the number of direct immediate connections, to a weighted number of connections 
dependent upon the degree of separation. These concepts have been coloured bright red in Figure 
19 above.

Once the critical concepts (business drivers, risk factors, etc.) have been identified, then we can 
also identify what other concepts are most connected to them. They are the most potent drivers/risk 
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factors within the business or operational activity that influence multiple critical drivers. Again, graph 
theory can objectively identify them.

The objective analysis of the cognitive map is thus capable of identifying the subset of concepts that 
represents the skeletal framework of a business or operational activity through which both valuable 
outcomes are generated and risks are propagated. This analysis will typically result in 80%+ of the 
answer. With the application of expert judgment from both a risk management and subject matter 
expert perspective, the remaining 20% can typically be quickly identified.

It is upon this subset of concepts that a practical quantitative modelling framework can initially be built.

7.4	 Bayesian networks: A quantitative framework for integrating information
A Bayesian network is a visual description (formally, a directed acyclical graph) of the relationships 
between causes and effects. It is made up of nodes and arcs such as those as shown in Figure 20.

Figure 20: Example of Simple Bayesian Network

Each node in the network represents a variable and the arcs represent the causal relationships 
between the variables. Bayesian networks permit the modeller to capture their reasoning about how a 
particular outcome may arise. The model does not say that a particular outcome will occur but is able 
to express how likely that outcome is, conditional upon any supporting events having taken place.

Bayesian networks use Bayes’ theorem to compute the probabilities in the model. Bayes’ theorem 
was developed over 250 years ago by Thomas Bayes. Formally it is written as follows:

	 p(B|A)
p(A|B) = ———  × p(A)

	 p(B)

where: 

p(A|B) is the posterior, the probability of event A occurring given that event B has occurred

p(A) is the prior, the probability of event A occurring

p(B|A)/p(B) is the evidence, the probability of event B occurring given that event A has occurred, 
divided by the probability of event B occurring

Note that this is a discrete probability statement. Knowing any two of these components means that 
the third can be determined.
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Let us consider a simple example based upon the network above. Assume that each node can be 
Yes or No, and assume that we have the probability of outcomes for late to work based upon the 
states of wake up late, as outlined in Figure 21.

Figure 21: Conditional Probability Distribution of Wake Up Late

Wake Up Late 	N o	Y es 

Late to Work

No	 0.9	 0.3 

Yes	 0.1	 0.7

The distribution for drive to work is slightly more complicated as it depends upon two factors rather 
than one, as outlined in Figure 22.

Figure 22: Conditional Probability Distribution of Drive to Work

Raining	N o	Y es 

Wake Up Late	N o	Y es	N o	Y es

Drive to Work

No	 0.8	 0.4	 0.3	 0.1 

Yes	 0.2	 0.6	 0.7	 0.9

Let us also suppose that there is a 30% chance of it raining and a 40% chance of waking up late. 
We can now ask basic questions such as whether it is more or less likely that this person woke up 
late if we know the person was late to work.

We start with:

p(oversleep)=0.4.

From Bayes’ theorem we know that:

p(oversleep | late) = p(late | oversleep) . p(oversleep) / p(late)

p(oversleep | late) = 0.7 × 0.4 / p(late)

We can indirectly determine,

p(late) = p(late|oversleep) p(oversleep)+p(late|not oversleep) p(not oversleep)

p(late) = 0.7 × 0.4 + 0.1 × 0.6 = 0.34

So, p(oversleep | late) = 0.82. This means that, if we know the person was late, then the chance the 
person overslept is significantly higher than the original estimate of 0.4 for oversleeping.

We can also consider what we can infer about the chance of driving to work. This is more 
complicated as it depends on more factors. The original probability of seeing the person drive to 
work is:
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p(drive) = p(drive|rain, oversleep) p(rain) p(oversleep)

+ p(drive|rain, not oversleep) p(rain) p(not oversleep)

+ p(drive|not rain, oversleep) p(not rain) p(oversleep)

+ p(drive|not rain, not oversleep) p(not rain) p(not oversleep)

= 0.9 × 0.3 × 0.4 + 0.7 × 0.3 × 0.6 + 0.6 × 0.7 × 0.4 + 0.2 × 0.7 × 0.6

= 0.486

But our revised posterior estimate p(oversleep) = 0.82 and p(not oversleep) = 0.18, and so p(drive) = 
0.6288. Hence we see that the evidence of this person being late also increases our estimate of that 
person’s chance of driving to work.

Over the past decade or so, computer algorithms have been developed which make the propagation 
of evidence through a complex Bayesian network easy to achieve. Evidence can be propagated both 
up and down a network to explain a consequence or to examine the consequence of a cause. It is 
now possible to implement quite large Bayesian network models which can propagate evidence 
virtually instantly. This provides a significant advantage over Monte Carlo methods for the purposes 
of sensitivity testing, stress testing, reverse stress testing, and what if analyses.

Armed with this technique we are now ready to construct an operational risk model.

7.5	D etermining appropriate states of business drivers and risk factors
The outcome of the cognitive mapping analysis has identified the causal drivers upon which business 
and operational outcomes are conditional. That is, outcome A is dependent upon drivers B and C. 
The next step is to define the states of each of these concepts.

When most people communicate a story about how a business or operational activity works, they 
use natural language, whether in verbal or written form. Such language almost always uses discrete 
states to describe a driver or risk factor of a business. Consider Figure 23, where discrete states can 
be derived from very common statements that business people use to communicate.

Figure 23: Examples of State Definitions Based Upon Common Business Communications

Statement Implied Driver States

Credit market conditions are extremely stressed. Stressed, normal

The outlook for economic growth is negative and highly uncertain. Depression, recession, low,  

normal, strong

Market liquidity has dried up. Illiquid, constrained, liquid

We are currently in a wet season, which has broken the recent 

drought conditions.

Wet, normal, dry

I just don’t have sufficient quality resources to get the job done. Sufficient/insufficient numbers; 

adequate/inadequate quality

We are at systems capacity and can’t handle any more throughput. At capacity, nearing capacity,  

below capacity

If Tom, Dick, and Harry all resign or became unavailable, we are in 

deep trouble as they have 90% of our operational intellectual capital.

Intellectual capital available  

or unavailable

Our modelling assumptions are inappropriate. Appropriate, minimally sufficient, flawed

The accuracy of our data is poor. High/medium/low quality

Capital requirements are too high for this product, it won’t provide a 

sufficient return on shareholder equity.

Too high/OK but constrained/acceptable
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In almost all of these cases, the unit of measurement of the driver under consideration is a 
continuous distribution. For example, credit market conditions could be measured by credit spread 
levels or systems utilisation levels as a percentage of capacity. Whilst it would be possible to define 
these drivers directly in terms of these continuous units of measurement, it is potentially misleading 
to do so. This is because humans are not very good at statistics. We all have a natural tendency to 
segment detail into discrete states and attach a label to each one of them. The point of this is that 
each state of a driver influences other drivers in a direct way. For example, it doesn’t really matter 
if actual GDP is -8% or -8.5%, but rather that we are in a depression, and the way in which the 
components of the economy and capital markets behave has fundamentally shifted relative to being 
in a normal growth phase.

By defining drivers using a minimally sufficient number of states, we are able to relate value and 
loss outcomes to the states in which the business finds easiest to communicate. Thus it is possible 
to leverage to the fullest extent possible the information value contained across the spectrum of 
business communications. By being couched in natural business language it enables business and 
detailed operational people the maximum opportunity to be engaged in the framework.

7.6	D efining causal relationships
The central question that goes to the heart of building a risk management and modelling framework is:

Do I have any information upon which to condition an outcome that I am interested in, and 
what is its quality level?

If no information exists, or if the information that is available has no value in it, that is, it is of poor 
quality, then there is no point in adding anything more to the modelling framework. The process of 
building a model can continue up until this point is reached. Of course, other constraints also play an 
important role in defining the appropriate place to stop (e.g., computational limitations, information 
collection constraints) but in this section we are only considering the pure value of information.

Perhaps not surprisingly, the science of information theory provides some guidance on how to 
answer this question. The two important concepts are:

1. Mutual information: A measure which quantifies the amount of information in common between 
two random variables.

2. Entropy: A measure which quantifies the uncertainty involved in predicting the value of a  
random variable.

Importantly, mutual information captures the full range of nonlinear dependence, as opposed to a 
correlation measure which only captures linear dependence. Figure 24 on page 42 provides some 
examples of the limitations of correlation measures in capturing nonlinear dependence structures.
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Figure 24: Mutual Information Versus Correlation

Entropy is a statistical measure of uncertainty, and hence is akin to the quality associated with 
information. An important property of entropy is that it is maximised when there is no information 
available on the likelihood of an outcome.

Both mutual information and entropy measures are higher-order concepts compared to their better 
known and simpler, yet more limited, counterparts of correlation and variance. With these concepts 
and a sufficiently creditable dataset, we can use these methods to determine the distributions of 
business drivers and outcomes such as loss severity and loss likelihood. Mutual information enables 
insight into what types of risk, control, or performance indicators will be most useful in explaining 
outcomes, thus alleviating the need to include all potential indicators.

However, what are we to do when we don’t have access to a credible dataset? In that case, it  
is necessary to use any available information that has at least some quality from any of the  
following sources:

�� Historical internal data
�� Historical external data
�� Construction and collection of new data that is appropriate
�� Direct input from management, risk analysts, and/or subject matter experts (SMEs)
�� Constraint propagation using Bayesian inference techniques

Where direct input from the business is used, it should be focused on capturing the relationships 
around the inflection points in the behaviour of drivers and risk factors. For example, The 
effectiveness of staff will be in a poor state when either the availability of staff is low, or the quality 
of staff is poor. Otherwise staff effectiveness will be in a good state. These conditional statements 
tend to be much easier for people to understand, and the nature of the relationship can be identified 
(in this case it is weighted more heavily toward the bad outcomes). Figure 25 shows this simple 
dependent relationship structure.19

19	 Bayesian Network analysis produced by Milliman using AgenaRisk software.
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Figure 25: Example of a Bayesian Relationship Structure for Staff Effectiveness

In this example, the effectiveness of staff is modelled as a truncated normal distribution with a 
mean that is a weighted function of the means of the independent factors, and with a variance that 
reflects the level of uncertainty related to an assessment of the quality of the relationship. Example 
distributions are shown for the independent factors, which combine through this relationship function 
to determine the distribution of the dependent variable, effectiveness of staff.

The independent risk drivers of availability of staff and quality of staff can then be relatively 
objectively assessed using a range of observable risk indicators. Figure 26 shows the inferred 
distribution results when education, training, and experience are added in as indicators of staff quality 
along with a simple dependency relationship.

Figure 26: Introduction of Measureable Key Risk Indicators
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In this example, although education levels might be assessed as being in a good state, if training and 
experience levels are poor, then the inferred distributions of staff quality and hence the effectiveness 
of staff deteriorate significantly. We can continue this process by bringing in the other parts of the 
framework, ultimately resulting in a conditioned set of outcomes. In Figure 27, we have used various 
beta distributions to model operational production outcomes as a function of the effectiveness of the 
production process. 

Figure 27: Linking Drivers to Outcomes

This figure shows the relationships between drivers and outcomes for three scenarios relating to 
three levels of the Effectiveness of Operational Process.

The distribution and 99th percentiles are shown for three scenarios, each relating to the states of the 
effectiveness of operational processes. Figure 28 shows the entire connected model in its base state 
with no evidence present.

Figure 28: Framework of Outcomes
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This Bayesian framework now links operational outcomes to business drivers and ultimately all the 
way through to individual risk indicators. The calibration process reflects the full range of uncertainty 
inherent in the underlying operational business risk drivers. From this it is now possible to estimate 
operational risk capital at a range of lower percentile levels (e.g., -63.1 at the 99th percentile level).

The above simplified example effectively combines a range of different sources of information and 
conditions loss outcomes upon them. Implicit within this is a definition of time to which both the 
business drivers and loss outcomes relate, for example the definition of the availability of staff  
could be a forward-looking assessment over the next 12 months. However, it would be just as easy 
to define this over a shorter or longer period, and then introduce the traditional concepts of  
likelihood and severity to define the temporal and scalar dimensions separately. One of the values 
of doing this is that it then enables common causal drivers of each to be identified and conditioned 
upon. For example, nearing or reaching systems capacity levels might have an impact on both 
the likelihood of problems occurring, which might lead to increased pressure and strain on staff 
effectiveness, which leads to high severity losses. These causal links can be extremely effective in 
identifying, understanding, and explaining the sources of interdependence between likelihood and 
severity distributions.

A Bayesian framework also has the ability to encompass the full range of data, distributions, and 
simulations that are required to undertake operational risk capital assessments. Where available, 
both internal and external data can be used to not only calibrate the end loss distribution (or 
likelihood and severity equivalents), but it can also be used to calibrate the distributions of the 
underlying drivers. Many companies are collecting large databases of such information, and analytic 
and predictive modelling techniques are being used successfully to define these distributions.

The underlying business drivers can be developed from an assessment of:

�� Business environment and internal control factors (BEICFs), which are characteristics of the 
internal and external operating environment that bear an exposure to operational risk. Business 
environment factors are the inherent risk, and internal control factors act to mitigate the risk, 
resulting in residual risk. Residual risks may be measured using qualitative expert judgment 
gathered via balanced scorecards, or quantitatively using data on key performance indicators 
(KPIs) and key risk indicators (KRIs).

�� Scenario analysis, which includes specific states across a range of internal and external factors.

Ultimately the above two sources should be self-consistent. This is somewhat difficult if they are 
considered independently. However, the use of a Bayesian framework enables them to be integrated. 
That’s because scenario analysis typically represents the state of the system BEICFs when they 
are at extremes. Ensuring that the conditional relationship structures of the BEICFs are consistent 
between the two sets of information is important.

When considering sources of information, it is critical that the level of quality or uncertainty associated 
with it is also assessed. Sometimes information will be of a very high degree of certainty, perhaps 
because it is derived from a team of people with a lot of experience handling a stable operational 
process, but in other cases it will be highly uncertain. In all cases, the level of quality or uncertainty 
in the underlying information should be reflected in the distribution parameter estimates, rather than 
assuming that they are perfect. Again, this is very straightforward within a Bayesian framework.

Where data exists on the state of the business drivers of the operational system, Bayesian inference 
and learning techniques can be used to refine the assessments of the distributional parameters and 
conditional relationships of each driver.
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7.7	 Aggregation
Aggregation is the process by which multiple risk elements are brought together to assess total risk. 
This is necessary because traditional methods of assessing total or operational risk are based upon a 
reductionist approach, which attempts to simplify complexity into discrete risk elements. As detailed 
in Section 6, traditional approaches to aggregating components of operational risk, whether via LDA 
models or scenario approaches, require the use of statistical methods such as correlations and/or 
copulas. Aggregation in these instances typically occurs at a relatively high level, for example at the 
scenario level or to total severity/frequency distribution level.

In contrast to this, structural approaches do not use such statistical methods. This is because the 
interrelationships between different elements of an operational risk framework are accounted for 
directly through the causal relationship structure. This is one of the strong advantages of structural 
models, whereby the nature of the dependency across multiple types of operational risk scenarios is 
modelled and can be explained directly through the interrelationships between the causal factors.

If two operational processes, business units, or scenarios are truly independent, then this can be 
shown to be the case as the operational drivers in the system structure (both the cognitive map and 
Bayesian network) of each will be unique. In this case, their total outcome distributions can simply 
be added together. However, in the event there are operational drivers that are common to both 
operational system structures, then clearly there will be some element of dependence. In this case, 
we can integrate the two systems by structurally combining them such that they are both connected 
to the common driver. Once this is done, total outcomes and risks can again be simply added 
together at the top level.

The dependence between the two operational systems is now explicitly related to the set of common 
drivers. In this framework, we have thus achieved not only aggregating complex interdependent risks, 
but also have created a mechanism for explaining exactly where and how the interdependency arises.

Building upon the previous example, suppose we now introduce the operational risk that an outage 
occurs, which is due to an interruption in the power supply to an important operational centre and 
has a likelihood of occurring of 10%. Operational losses will be incurred as a result, but the extent 
of them will be dependent upon the degree of process maturity. Where process maturity is high, 
such as where an extensively tested business continuity plan (BCP) is in place, workarounds such 
as transitioning to offsite facilities mean that production losses are minimised. However, if process 
maturity is low, such as where a BCP is not even in place, these losses will be much more significant. 
Figure 29 illustrates these dynamics for three power failure scenarios relating to different process 
maturity levels.

Figure 29: Losses Due to Power Outages for Three Process Maturity Scenarios
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The 99th percentile outcome for losses due to outages, conditioned upon the fact that the power 
supply is not available, is -63.5, -43.4, and -17.0 for the low, medium, and high scenarios for process 
maturity. When the state of the power supply is not known (i.e., a likelihood of 10% being unavailable), 
then the 99th percentile outcomes reduce to -52.8, -32.9, and -11.9 respectively. When the state of 
process maturity is also not known with certainty, then the 99th percentile outcome is -44.9.

Given that process maturity is also an important driver in the main example, we can now link the two 
structures together, to obtain an assessment of the distribution of the aggregate set of outcomes. 
This is shown in Figure 30.

Figure 30: Aggregate Operational Outcomes

Total operational outcomes are now a complex function of process maturity, which impacts outcomes 
through two pathways. The 99th percentile outcome of -63.1 relates to the first pathway through 
operational production outcomes, whilst the 99th percentile outcome of -44.9 relates to the second 
pathway through losses that are due to outages. These combine to give a 99th percentile outcome 
of -73.6 for total operational outcomes.

Using traditional techniques such as LDA and scenario analysis, the two elements to this structural 
framework, operational production outcomes and losses that are due to outages, would have 
been modelled separately. Aggregation would then have occurred through a general correlation 
assumption. However, in a Bayesian framework, we can explicitly identify the what, where, why, 
and how of the interdependencies between the two operational elements. They are completely 
independent of one another across all underlying drivers, except for whenever process maturity is 
impacted. In a traditional statistical framework, we would say that they have a correlation of zero, 
except for when process maturity is impacted. Figure 31 illustrates the interdependent impact when 
process maturity is in its different states.
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Figure 31: Impact of Three Different States of Process Maturity

Figure 32 shows the 99th percentile results for each of the scenarios as well as for the base 
scenario where the state of process maturity is uncertain.

Figure 32: Impact on 99th Percentile Outcomes of Three Different States 

of Process Maturity

Process Maturity	L ow	M edium	 High	Ba se

Operational Production Outcomes	 -72.4	 -59.1	 -47.7	 -63.1

Losses Due to Outages	 -52.8	 -32.9	 -11.9	 -44.9

Total Operational Outcomes	 -82.9	 -65.3	 -51.9	 -73.6

Implied Correlation	 -0.15	 -0.08	 0.24	 -0.10

From Figure 32, it can be seen that both risk elements are impacted by the various states of process 
maturity. It is also possible to infer the implied statistical correlation between these elements for 
each of the scenarios, as shown in the final row. What can be seen here is that the nature of the 
interdependency changes from a negative to a positive one as process maturity moves from a low to 
a high state. Nonlinearity is clearly evident here, and it can be quantified explicitly. This shows that, as 
process maturity improves, overall risk reduces, but the size of the diversification benefit also reduces. 

7.8	 Risk assessment
Once the system structure of an operational process has been fleshed out, it can readily be used 
to actively and dynamically monitor risk levels. As management information is collected on the risk 
indicators and other business drivers of the model, the model will then update the state of the 
dependent outcomes. For example, Figure 33 shows the state of the system under the constrained 
set of outcomes given the following measurements:

�� Education levels = Good
�� Training = Poor
�� Experience = Poor
�� Effectiveness of systems = Medium
�� Availability of staff, availability of power supply, and process maturity remain unmeasured
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Figure 33: Impact of Measurements on Outcomes Versus Base Scenario

The impact of this information can be clearly seen compared to the base scenario: the quality of staff, 
the effectiveness of staff, and the effectiveness of operational process have all deteriorated. Risk 
can then be measured at the total operational outcome level, using the typical statistical concepts 
such as variance and tail risk measures such as Value at Risk (VaR) and CTE (otherwise known as 
tail VaR). In this example, the 99th percentile total operational outcome, or VaR, has increased in 
magnitude from -73.6 to -79.2.

7.9	 Capital assessment
Bayesian network frameworks are ideally suited to assessing capital requirements. This is because 
they can simultaneously account for the full range of operational outcomes, both positive and 
negative, and common and extreme. The above examples could be readily interpreted as a calculation 
of operational risk capital, whereby the quantity of capital held is calculated using a 99th percentile 
VaR on total operational outcomes over a defined time horizon such as one year (i.e., 73.6).

The benefit of a Bayesian approach for capital assessment is that we are now able to directly link 
capital requirements to the observed states of important business drivers, and thus can dynamically 
manage capital in response to the evolving business environment.

From a banking perspective, Bayesian models are able to integrate the four data source elements 
directly into the framework: internal and external historical loss data, scenario analysis, and business 
environment and internal control factors.
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7.10	Sensitivity analysis
An important question that both business and risk managers want to know the answer to is: What 
business drivers have the most material impact on my profitability and capital? If we measure capital 
as a 1st percentile outcome (i.e., a 99th percentile VaR), and profitability as a 75th percentile 
outcome, then it is possible to measure the sensitivity of these variables to the full range of possible 
states of the underlying business drivers. These are shown in Figure 34.

What the above analysis tells us is that capital is the most sensitive to the availability of power supply. 
If this deteriorates, then capital measures will also significantly deteriorate. The effectiveness of 
systems and staff are the next most important drivers of potential deteriorations in capital. In contrast 
to this, capital is highly leveraged to process maturity, which presents the biggest opportunity to 
improve capital requirements. In terms of profitability, the availability of power supply similarly has the 
highest downside sensitivity, whilst process maturity has the highest upside sensitivity.

Critically, these results reflect the full level of interdependencies between all the dependent business 
drivers. Sensitivity analyses undertaken using traditional LDA or scenario methods typically do not do 
this as they have no mechanism to resolve these important dependencies. This is very important for 
operational models that have a lot of embedded complexity and interdependencies, unlike the current 
example, which is simplified for the purposes of this paper.

7.11	Stress testing
Stress testing is a useful mechanism for understanding the impact that a change to a business driver 
has upon operational outcomes. A Bayesian approach is not only able to do this with ease, but by 
using Bayesian inference, it is able to infer the states of all business drivers that are causally related 
to the business driver(s) under consideration. Figure 35 shows the impact when the effectiveness of 
staff is set to both low and high states.

Figure 34: Sensitivity of Capital and Profit Measures to Underlying Business Drivers
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Figure 35: Stress Tests for Effectiveness of Staff Set to Low (purple) and 

High (green) States

The impact upon upstream business drivers and risk indicators is able to be inferred by the Bayesian 
network. This shows the range of state outcomes that are consistent with each of the scenarios. 
This shows that the most likely source of a low measure of staff effectiveness is a poor level of staff 
quality, whilst the most likely source of a high measure of staff effectiveness is a high measure of staff 
availability. This provides important information to business managers on where to spend marginal 
resources (i.e., staff quantity or quality) in order to enhance business outcomes.

The impact of this stress test on profitability and capital measures is summarised in Figure 36.

Figure 36: Stress Tests for Effectiveness of Staff, Impact on Capital and Profitability

Effectiveness of Staff	L ow	Ba se	 High

Capital (1st percentile level)	 -82.6	 -73.6	 -61.4

Profitability (75th percentile level)	 57.0	 63.2	 66.0

This example shows that staff effectiveness has a proportionately greater impact on capital than it 
does on profitability.

The example shown above on risk assessment could also be interpreted as an example of a 
combination stress whereby multiple business drivers are impacted. Combination stress tests can 
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be extremely informative as they most closely capture the dynamics of real-world stresses, which are 
almost always multivariate rather than univariate in nature.

7.12	Reverse stress testing
Reverse stress testing is a powerful mechanism for addressing the important question of: What does 
my business look like if it is doing really well compared to if it is failing?

The only way to answer this question is to use inference techniques. As Bayesian networks are built 
using Bayesian inference techniques, they are able to handle such questions with ease. Figure 37 
shows the states of the business drivers when total operational outcomes are preconditioned to be 
within the bottom 10% of outcomes, and then separately the top 10% of outcomes.

Figure 37: Reverse Stress Tests for Bottom and Top 10% of Outcomes

From this analysis we are able to quantify the states of each underlying business driver that 
are consistent with either a good or bad outcome. From this analysis it is clear that the biggest 
differences between these two opposing business states are:

�� Availability of power supply, with almost a tenfold difference in the risk of power being unavailable 
between the two extremes

�� Process maturity, with a significant increase in both high and low states

�� Moderate differences in staff and systems effectiveness
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In this example, it is interesting to note that the staff level risk indicators of education, training, and 
experience are actually very consistent between these two extremes. Findings like these might at first 
seem counterintuitive, but as we can explain why this is the case, it might be an important insight that 
we shouldn’t overly focus on these indicators as critical drivers of capital and profitability.

7.13	Risk appetite and risk limit setting
The risk appetite statement is the primary mechanism the board uses to set the degree and type 
of risk that an organisation is willing to accept in pursuit of its strategic goals. The risk appetite 
statement contains a series of specifications of the range of outcomes or risks across a number of 
dimensions. Examples of risk appetite statements include:

�� Not bearing a loss of greater than x more than every n years (e.g., 100m every 10 years)
�� Not suffering a workplace fatality
�� Having a low tolerance to reputation risk
�� Ensuring full compliance with all relevant laws and professional standards

Risk appetite statements such as these are defined at a high level with respect to tangible outcomes 
that the board, shareholders, and executive management care about. One of the key challenges that 
managers must address is to take these statements, which act as constraints on the organisation, 
and to understand what they mean at a more granular level. This requires translating them into 
consistent states across a multitude of business drivers, risk categories, and risk factors. This can be 
extremely difficult, as there is a significant amount of complexity and interrelationships which need to 
be resolved in this process, which humans are not naturally well equipped to deal with.

However, a Bayesian framework is ideally suited to resolving this problem. By way of example, 
consider two risk appetite statements that relate to the above operational system:

1. Total operational outcomes must not be less than the 1st percentile level of possible outcomes
2. Total operational outcomes must not be less than the 10th percentile level of possible outcomes

What do these two statements imply about the states of the underlying operational drivers, and how 
do we set risk limits consistent with these outcomes? Figure 38 illustrates two examples.

Figure 38: Risk Appetite and Risk Limit Setting for the 1st and 10th Percentile Outcomes
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What can be seen here is the range of states for each driver that are consistent with the two 
conditioned outcomes. For example, power supply must not be available at least 21.5% and 45.1% 
of the time, respectively, in order for total operational outcomes to fall within the bottom 10th and 
1st percentile. This is significantly worse than the base estimate of 10% that power supply is not 
available. In effect, these two probability outcomes reflect the two risk limits that are consistent with 
both the risk appetite statement constraints, as well as all of the other possible states that other 
drivers could be in. Likewise the probabilities for the states of the other business drivers reflect their 
appropriate risk limits that are consistent with the risk appetite statement.

This is quite a powerful framework because it now gives management a guide as to how to 
dynamically update risk limits as actual risk levels change in business whilst still being consistent with 
the overall risk appetite statement.

7.14	Advantages and limitations of a structural framework
The advantages of a structural framework are that it:

�� Provides a meaningful explanation of how operational loss outcomes are directly related to the 
states of business drivers

�� Provides engagement with the business as it is framed directly in terms of the fuzzy discrete states 
and relationships that most business language is couched in

�� Provides a single consistent framework to undertake risk assessment, capital assessment, risk 
appetite, the setting of operational risk limits, stress testing, reverse stress testing, and complex 
scenario testing

�� Identifies and captures where and how risk mitigation actions can reduce risk likelihood and severity

�� Incorporates a wide variety of types of information used across the business, including quantitative 
loss data and the intellectual property/expert judgment of individuals and teams, directly 
accounting for the quality of this information

�� Does not rely on knowing/hypothesising the prior distributions of loss severity or frequency 
outcomes, which could be highly nonlinear

�� Captures full range of complex and nonlinear interdependencies

�� Can evolve dynamically over time to reflect the changing operational and risk management 
structure of a company

�� Can degenerate into deterministic and stochastic frameworks, which makes them ideal for 
extensions of existing frameworks to deal with the marginal questions that other frameworks find 
difficult to answer

The limitations of a structural framework include:

�� It can be time-consuming to undertake, and requires expertise in the overall operational system as 
well as Bayesian methods and experience in their applications.

�� Eliciting the marginal dependent relationships can be challenging. It can require significant data 
analysis, and also relies upon subjective opinion, which may be of poor quality (notwithstanding 
the potential value of this information).

�� A higher level of modelling expertise and capability is generally required for Bayesian approaches 
relative to deterministic and stochastic approaches.
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7.15	Choice of technique
It is important to note that not all circumstances would warrant a Bayesian approach, given 
the additional effort that is typically required. For organisations with very linear and simple 
operational models, the use of traditional simple and statistical approaches may be sufficient to 
meet requirements. In this case a Bayesian framework could still be used, but it would essentially 
degenerate into the simpler deterministic and stochastic methods and may provide relatively little 
marginal value.

Structural frameworks are particularly valuable wherever significant complexity exists in an 
organisation, and in particular for the high-severity, low-likelihood risks where a deep dive into the 
causal drivers can be justified. They can also be combined with and leverage scenario analysis and 
LDA techniques to reflect the structure and information that these approaches provide.

Finally, it is worth noting that a combination of methodologies might be the best framework for an 
operationally complex organisation. Simple standard formulas might be sufficiently accurate and 
robust for very well established and stable operational processes that give rise to low-severity, 
high-frequency losses, whereby the underlying processes are highly correlated to a few well-
chosen key risk indicators. Concept mapping techniques can be used to elicit the system structure 
when adopting a scenario analysis approach, and then integrated into a holistic LDA or Bayesian 
framework, which can leverage BEICFs and historical loss data to parameterise the interconnected 
severity and likelihood distributions that drive a large range of operational loss sources. Lastly, 
for very material and low likelihood events such as rogue traders, a deep dive might be justified 
using cognitive mapping and Bayesian techniques based upon both internal business drivers and 
leveraging the findings from an assessment of the few external events that do exist.
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8	R egulatory requirements

8.1	 Overview of Basel II/III framework for operational risk
Operational risk is mentioned as one of the main reasons to move from the 1988 Basel Accord 
(sometimes referred to as Basel I), which was concentrated mainly on credit risk, to the Basel 
II directive. More direct reasons include events such as the fall of the Barings Bank (caused by 
unauthorised transactions on derivatives) and the terrorist attacks of 11 September 2001.

Basel II is divided into the three so-called pillars:

�� Minimum capital requirements, defining the amount of surplus capital that needs to be held by an 
entity to cover three major quantifiable risks: credit, operational, and market

�� Supervisory review process, stating the principles of national supervision and describing the tools 
that should be used to assure proper capitalisation of banks

�� Market discipline, defining the information about the risk profile that an entity should publish so 
that market participants can properly assess the financial situation of a company.

Each of these pillars outlines requirements and/or advice concerning operational risk. 

Pillar I describes methods of determining the amount of capital required to support the operational 
risk of a company, defined as the risk resulting from inadequate or failed internal processes, people 
and systems or from external events. There are three methods of calculation proposed in the 
document: the basic indicator approach, the standardised approach, and the advanced measurement 
approach (AMA). Each is more complex than the previous one, and requires that management be 
more aware of the characteristics of risk specific to the company. Industry expectations are that using 
more complex methods should yield a lower capital requirement, and this is supported by the Basel II 
document itself, stating that banks should be encouraged to develop more sophisticated operational 
risk measures.

The basic indicator and standardised approaches both use the assumption that the amount of 
operational risk is proportional to a positive part of gross income (specifically, its average annual 
value over the last three years). The former uses a simple formula:

	 3
Capital charge = 15% × ∑ max(0, GIi)/n

	 i=1

where:
GIi is the annual gross income over the ith previous year
n is the number of the previous three years for which gross income is positive

The standardised approach uses only a slightly more complex definition, dividing the total gross 
income between the eight business lines:

	 8	 3
Capital charge = ∑ βj × ∑ max(0, GIi,j)/3

	 j=1	 i=1

where: 
βj is a fixed percentage set for the jth business line
GIi,j is the annual gross income over the ith previous year for the jth business line

The βj coefficients are set to:
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�� 18% for the corporate finance, trading, sales, payment, and settlements
�� 15% for the commercial banking and agency services 
�� 12% for the retail banking, asset management, and retail brokerage business lines

Additionally, at a national supervisor’s discretion, the bank may be allowed to use the alternative 
standardised approach, which bases its calculations for the retail and commercial banking on 3.5% 
of total outstanding loans and advances, instead of the gross income.

AMA allows the exact formula for required capital to be specified by the financial institution itself, 
and as such is subject to supervisory approval. It should aim at holding enough capital to cover 
the operational losses in the one-year horizon with 99.9% probability. There is an expectation that, 
once adopted, risk allocation techniques will be constantly developed. Using AMA only for some 
part of a company’s operation and simpler approaches for other parts is also possible, under certain 
conditions.

While any bank can use the basic indicator approach, there are requirements that a company must 
fulfil in order to qualify to use the standardised approach or AMA. For both, the basic expectation is 
that the financial institution has generally well-implemented operational risk management systems. To 
use AMA, however, the bank must fulfil much more restrictive criteria, specifying detailed qualitative 
standards (aimed at integrating the risk measurement and the risk management system) and 
quantitative standards (aimed at capturing the most severe events from the tail of the distribution).

The criteria include:

�� Utilisation of internal loss data (for at least a five-year period)
�� Use of relevant external loss data for the measurement of the probability of rare events
�� Analysis of scenarios for an evaluation of exposure to severe events
�� Capture of key risk factors that can change the risk profile (related to business environment or 
internal control processes)

Additionally, before the bank can use AMA for regulatory capital calculation purposes, the model is 
subject to initial monitoring of its appropriateness by the supervisor.

Pillar II in the Basel II document itself is quite sparing with advice about operational risk management 
supervision—it contains only a single, rough guide about considering whether gross income is a 
proper base for the operational risk capital calculation in the case of every bank. However, more 
detailed guidance was developed and published by a committee in a follow-up document, regarding 
the principles of sound operational risk management, which should be followed by a bank using at 
least the standardised approach, and supervisory guidelines for AMA.

Sound risk management principles should underlie every risk management system employed in a 
bank. That framework is based on the three lines of defence:

1.	Business line management (responsible for the identification and assessment of specific risks)

2.	Independent corporate risk management function (responsible for framework development and 
maintenance)

3.	Independent review (responsible for verification of the effectiveness of the framework and 
validation of its methodology)

Processes based on this structure should exhibit certain characteristics: integration with 
organisational culture, involvement of the highest management and supervision level of the company, 
defining risk appetite, identifying and assessing risk among existing and new products, constant 
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monitoring, reporting, control and mitigation of risk, loss reduction, and public disclosures allowing 
assessment of the bank’s approach to risk. 

Guidelines for supervising AMA are very general and based on principles, so that they allow for 
flexibility and don’t hinder the evolution of new methods of operational risk assessment. However, 
some practices that emerged were discussed by the regulators, who subsequently released 
additional detailed advice.  Examples include the calculation of loss value (i.e., what should be 
included in the recorded amount) and the date at which a loss should be recorded—date of 
discovery, of accounting, etc.

Pillar III specifies the information regarding the operational risk management system that should be 
publicly disclosed by a company. It is limited to the operational risk valuation approach type used by 
a bank, and, if it’s an AMA, the description of the approach, including key internal and external risk 
factors used.

Basel II, which was induced by, among other events, significant operational losses, contains 
substantial amounts of guidelines regarding operational risk. The Basel III accord that followed it, on 
the other hand, concentrated on the risks that caused the global financial crisis in the late 2000s and 
as such did not contribute much to the operational risk framework founded by the previous accord.

From the insurance market point of view, it might be interesting to note that Basel II forbids the use 
of capital invested in insurance entities owned by a bank to satisfy its capital needs, with a possible 
exception of surplus capital of majority-owned companies (at the national regulator’s discretion). This 
means that if there is a regulatory requirement for operational risk capital in the insurance subsidiary, 
it is not possible to allow the same capital cover both bank and the insurer operational risk.

It should be also noted that companies using AMA are allowed, under certain conditions, to 
consider an insurance company as an operational risk mitigation tool and include it to lower capital 
requirements. Moreover, in the follow-up documents by the Basel committee, banks are encouraged 
to implement the use of this tool to their risk management on a continuous basis. Such an approach 
has also benefited the insurance industry, as it induced the creation of new kinds of insurance 
products specifically designed to satisfy the requirements of Basel II.

8.2	 Overview of insurance operational risk regulatory requirements

8.2.1	 Europe

8.2.1.1	Solvency II
Solvency II, the directive codifying EU insurance regulation, was issued in 2009 and aimed at 
implementing various rules regarding insurance companies by 2012 (which has subsequently slipped 
a number of years beyond this). Because it arrived later than the Basel II regulations, Solvency 
II obviously was strongly influenced by the bank supervision arrangements; Solvency II is even 
sometimes called Basel for insurers.

One such influence was the recognition of the need to include operational risk requirements as a 
part of the regulations. As this type of risk was not well recognised among the insurers, the advice 
included in the directive is not as detailed as in the Basel accord. Operational risk is defined exactly 
the same way as in Basel II, and the only other guidelines concerning the topic are the (very general) 
requirements on the indicators used to calculate the capital requirements for operational risk: annual 
expenses for unit-linked life business, premium income and technical provisions for other lines (with a 
cap specified based on the other risks’ capital).

The detailed implementation measures for the directive, including the formulae for capital 
requirements’ calculations, are still to be published. They are likely to be based on five (so far) 
quantitative impact studies (QISs) that were carried out by EIOPA, the EU-wide insurance regulator. 
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Each of those studies required insurers to calculate their capital requirements using a specified 
formula and to answer some qualitative questions (contrary to the name of the study).

Following the QISs, we can see how the operational risk requirements have evolved:

�� In QIS 1 there were no questions or ways to calculate operational risk’s capital  
requirement.

�� In QIS 2 operational risk was one of the main four risk drivers (along with market, credit, and 
underwriting risk). It included questions to insurers regarding risk management structure and 
processes, including the use of scenarios and/or statistical data to quantify operational risk. The 
formula for capital requirement was based on a maximum of some percentage of premiums and 
reserves (different for life, nonlife, and health lines of business). Unit-linked (UL) life business was 
treated preferentially, using only 10% of the respective values.

�� QIS 3 was heavily impacted by a document published by a Basel committee regarding sound 
risk management; most of the questions asked related to the use of risk management techniques 
covered in the above guidelines. Capital charges have been bounded by 30% of the capital 
requirement for other risks, and unit-linked business relief was excluded from calculations. 
Additionally, risk resulting from risk mitigation failures was recognised as a part of operational risk.

�� QIS 4 changed the approach to operational risk for groups, requiring them to report not only 
the sum of the amounts of operational risk capital in their subsidiaries, but also the consolidated 
operational risk for the whole group; they were also encouraged to present the evidence that the 
operational risks of their different subsidiaries have a correlation of less than 1. The formula for 
capital charge was changed regarding the unit-linked business, basing their operational risk on the 
amount of annual expenses, instead of premiums and provisions. 

�� Finally, QIS 5 has changed only the formula for the operational risk capital charge, to a much more 
sophisticated equation:

SCROp = min(max(Opprem, Opprov), 0.3 × BSCR) + 0.25 × Expul

where: 
BSCR is the aggregated capital requirements for the other risks of non-UL business
Expul are the annual expenses in UL business in the previous 12 months

Opprem and Opprov are the charges calculated on a base of last year premiums and current technical 
provisions, according to the formulae:

Opprov = 0.045 × max(0, TPlife–nonUL) + 0.03 × max(0, TPnon-life),

Opprem = 0.004 ×(Earnlife–nonUL) + 0.03 × Earnnon-life  
+ max(0, 0.04 × (Earnlife–nonUL – 1.1 × pEarnlife–nonUL))  
+ max(0, 0.03 × (Earnnon–life – 1.1 × pEarnnon–life)

where:
TPxxx are the technical provisions for business unit xxx
Earnxxx are the earned premiums during the last 12 months for business unit xxx
pEarnxxx are the earned premiums during the previous12 months for business unit xxx

These formulae are for life (excluding unit-linked) and nonlife business respectively. Health business 
was integrated into either life or nonlife lines, depending on its nature.
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Generally, EIPOA's opinion is that it’s hard to find a formula that suits every entity. Instead, its idea 
is to use the formula to measure operational risk for most of the companies and allow others, which 
don’t find that suitable, to apply for a partial internal model. Also, a standard formula should not be 
too sophisticated, in order to maintain its ease of use on a common basis. However, some ladder 
factors are currently considered to allow companies a discount in capital charge reflecting the 
degree of progress in the operational risk management framework.

8.2.1.2	Current status
The Solvency II final implementation date has been postponed, and there are some concerns 
whether the current date is realistic. By that time and whilst predicting future regulations from 
the QIS documents and other EIOPA publications, companies must set up some operational risk 
management and quantification systems according to national regulations. From a practical point 
of view in most of the EU countries, no consolidated and structured approach to operational risk 
management exists. This is quite often also true for those insurance companies which are part of 
bancassurance groups, which tend to adopt the standard banking approach. Only in a few cases 
have they started to undertake a loss data collection exercise to develop operational loss models 
tailored more to their businesses.

For example, most Central and Eastern Europe (CEE) countries have not yet developed any 
operational risk requirements or recommendations. In Romania, there are some regulations governing 
insurance company risk management in general, which require the company to assess some stress 
tests’ impacts, but this does not result in a capital charge. In Poland, the national supervisor controls 
exposure to operational risk annually, based on expert judgment; results are disclosed only to the 
examined entity and no capital charges are applied. However, detailed guidelines for banks are in the 
process of consultations, and as they are supervised by the same institution, there is a possibility for 
future quick development in this area.

8.2.2	 Australia
The Australian Prudential Regulatory Authority (APRA) is responsible for setting operational risk 
requirements for regulated financial services entities operating in Australia.

8.2.2.1	Life and General Insurance Capital (LAGIC) Prudential Standards
Prudential Standard LPS 118 outlines the calculation methodology of the operational risk charge that 
life insurance companies must hold to cover operational risks. The operational risk charge (ORC) 
is calculated as the sum of that charge for risk business (ORCR), for investment-linked business 
(ORCI), and for other business (ORCO):

ORC = ORCR + ORCI + ORCO

The ORCR is calculated as follows:

ORCR = A × [max(GP1, NL1) + max(0, |GP1 – GP0| – 0.2 × GP0)]

where:	
A is 2% for statutory funds of specialist reinsurer and 3% for other funds
GPt is gross premium income for the 12 months ending on the reporting date at time t
NL1 is the net adjusted policy liabilities at the reporting date
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The ORCI and ORCO are calculated as follows:

ORCI or ORCO = B × [NL1 + max(0, GP1 – 0.2 × GL0) + max(0, C1 – 0.2 × GL0)]

where:
B is 0.15% for statutory funds of specialist reinsurer and 0.25% for other funds
NL1  is the net adjusted policy liabilities at the reporting date
GP1 is gross premium income for the 12 months ending on the reporting date at time 1
GL0 is gross adjusted policy liabilities for the 12 months ending on the reporting date at time 0
C1 is all gross payments to meet liabilities to policy owners for the 12 months ending on the reporting 
date at time 1

Prudential Standard GPS 118 outlines the calculation methodology of the operational risk charge 
that general insurance companies must hold to cover operational risks. The operational risk charge 
(ORC) for general insurance companies is calculated as the sum of that for inwards reinsurance 
business (ORCI) and for not inwards reinsurance business (ORCNI):

ORC = ORCI + ORCNI

The ORCI and ORCNI are calculated respectively as follows:

ORCI = 2% × [max(GP1, NL1) + max(0, |GP1 – GP0| – 0.2 × GP0)]

ORCNI = 3% × [max(GP1, NL1) + max(0, |GP1 – GP0| – 0.2 × GP0)]

where:
GPt is gross written premium revenue for the 12 months ending on the reporting date at time t
NL is the central estimate of insurance liabilities at the reporting date

8.2.2.2	Superannuation funds
Prudential Standard SPS 114 outlines the calculation methodology of the operational risk financial 
requirement (ORFR) that superannuation entities must hold to cover operational risks. Unlike that for 
insurance companies, the ORFR is not calculated using a standard formula approach. Instead, the 
ORFR must be determined by the entity and it must reflect the size, business mix, and complexity of 
the operations, at a minimum including:

�� An amount that the entity determines is necessary to address operational risks that it has identified 
in its risk management framework, having taken into account appropriate risk mitigations and 
controls. This amount must reflect any uncertainty in the scale of losses.

�� An additional amount that the registrable superannuation entity (RSE) licensee determines is 
required for operational risk losses that have not been specifically identified in its risk  
management framework.

A tolerance limit below the ORFR must then be set, such that, if financial resources fall below it, the 
entity must take action to replenish resources to meet the ORFR.

8.2.3	 United States and Canada
There is no explicit formula for operational risk in either the United States or Canadian insurance 
regulatory capital frameworks. However, both of those frameworks do have a broad component that 
could be considered to cover at least an element of operational risk.

In the US risk-based capital formula, this is the business risk component. Business risk for life 
insurers is based on premium income, annuity considerations, and separate account liabilities. Also 
included in business risk exposures are litigation, expenses relating to certain accident and health 
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coverage, and expenses. Business risk for health insurers consists of the following subcomponents: 
administrative expense risk (variability of operating expenses), non-underwritten and limited risk 
(collectability of payments for administering third-party programs), guaranty fund assessment risk, 
and excessive growth. These subcomponents recognise that instability can result from poor controls 
on administrative expenses as well as from instability in medical expenses.

In the Canadian life insurance regulatory standards, operational risk is covered implicitly, through 
the regulator requiring all companies to be at a minimum of 150% of the minimum continuing capital 
and surplus requirements (MCCSR). This buffer is due in part to cover operational risk. However, at 
the time of this writing, the Canadian regulator was in the process of a series of quantitative impact 
studies similar to Solvency II, and had announced the intention of introducing a specific element for 
operational risk capital, although the proposed method had not yet been released.

8.2.4	 Japan
Under Japan’s statutory solvency requirement for life insurers, operational risk is effectively captured 
by the component of capital called the management-related risk capital (MRC). This is calculated as:

MRC = (R1 +R2 + R3 + R7 + R8) × (Risk Factor)

where: Risk Factor = 3% in case that profit for the year is a negative value
	 2% in case that profit for the year is a positive value or zero

and where: 
R1 is the risk capital for insurance risk
R2 is the risk capital for interest-crediting risk capital
R3 is the risk capital for asset risk
R7 is the risk capital for products with minimum guarantee benefits
R8 is the risk capital for insurance risk relating to third-sector products

Full details of how R1 through R8 elements are calculated are beyond the scope of this document, 
but they can be found on the Japanese Financial Services Authority (FSA) website.

8.2.5	 China, Hong Kong, and Taiwan
China and Hong Kong do not have specific capital charges for operational risk. As they operate 
under the old EU Solvency I rules of total capital held equal to 4% of reserves plus 0.3% of sum at 
risk, operational risk capital is implicitly captured within this. 

Taiwan’s risk-based capital structure specifies an operational risk charge (C4) calculated as:

C4 = x% of premium income + 0.25% of assets under management

where x = 0.5% for life business, 1% for annuity business, and 1.5% for all other business

8.2.6	 Republic of South Africa
The Republic of South Africa (RSA) currently undergoes the process of creating regulations 
regarding insurance companies’ solvency, called solvency assessment and management (SAM). The 
Financial Services Board (the national insurance supervisor) derives local rules from the European 
Solvency II directive, and performs similar quantitative impact studies. The final implementation date 
is set for the end of 2015.

Currently, QIS 2 is being carried out; it corresponds to the European QIS 5, but participation is 
voluntary. As for the operational risk, it uses exactly the same definition and formulae as in Solvency 
II; however, unit-linked portfolios’ expenses are defined in a more detailed way than in the EU QIS 5.
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8.2.7	 Russia
No detailed requirements on operational risk are available in Russia. However, operational risk 
management frameworks do exist, which state that operational risk should be controlled by the 
company’s headquarters. This control should include the collection of loss data, the testing of 
operational systems (at least every six months), and the use of operational risk transfer to third parties 
if required. Contrary to usual practice, legal risk is considered separately from operational risk (along 
with strategic and reputational risks).
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9	E merging operational risk assessment 

	a nd black swans

9.1	 Operational risk dynamics and evolution
Organisations change. In market-based economies, they either adapt to the changing environment 
or they eventually die. Such changes are reflected in the operational production processes of the 
organisation, and as such, the associated operational risks which they face also evolve. Hence 
any effective operational risk management framework needs to be able to evolve along with it. 
Static frameworks that never change their inputs will eventually become irrelevant at best, and very 
misleading and potentially dangerous at worst.

Instead, the only aspects that should remain static in an operational risk framework are the central 
questions that it seeks to answer:

�� How much operational risk is the company currently exposed to, and what operational processes 
and factors of production is it sourced from?

�� What is the company’s appetite for operational risk, and how does it set consistent risk limits for 
each granular operational production process across its business?

�� How can the company most effectively mitigate excess operational risk that it does not wish  
to bear?

�� How can the company tactically optimise its operational risk budget as actual operational risk 
changes over time?

�� What are the company’s emerging operational risks and how might it be able to manage them?

As operational activities and the factors of production evolve over time, the sources and dynamics 
of operational risk also change. A static framework of risk drivers and key risk indicators will 
eventually become insufficient to properly measure and manage operational risk. For example, a 
car manufacturer that moves from a labour-intensive to an automated robotic-operated production 
process has completely different operational risk drivers as the relative sources of production inputs 
have changed. Static measurements of operational risk based on such factors as the number of 
cars produced, types of cars produced, and the length of time it takes to complete each process 
are independent of production inputs. Instead, different measurements are needed based upon the 
characteristics of the production process itself, and its interaction with its environment. 

Understanding the relationship between these characteristics can give us insight into the emergent 
properties of operational risk systems. This is the domain of phylogenetics.

9.2	 Phylogenetics
Phylogenetics is the study of the evolutionary relationships between both living and nonliving things. 
In particular, it is based upon analysis of the characteristics that define each thing, and it seeks to 
draw on one-to-many relationships between them that represent the simplest way to structure the 
relationships. This can be objectively determined, which is one of its strengths. Figure 39 shows a 
high-level cladogram of the tree of life which is based upon this technique.
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Figure 39: Cladogram of the Tree of Life

We can apply this to the study of operational risk by substituting risk events for the things in Figure 
39. We can then explore the relationship of the characteristics that define these events, in order to 
understand how certain characteristics are evolving over time to generate new emergent risks.

9.3	D erivative trading loss example
In order to demonstrate this technique, we have applied it to operational losses associated with 
derivatives. We have leveraged the work produced by Coleman (2011), who mapped a range of 
relevant characteristics to a number of major derivative loss events. The loss events are shown in 
Figure 40 on page 66.
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Figure 40: Selection of Large Derivative Trading Losses (2011 USD equivalent figures)
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The characteristics these risk events have been mapped to are:

1.	 Involving fraud
2.	 Involving fraudulent trading
3.	 To cover up a problem 
4.	 Normal trading activity gone wrong
5.	 Trading in excess of limits
6.	 Primary activity financial or investing
7.	 Failure to segregate functions
8.	 Lax management/risk control problem
9.	 Long-term accumulated losses in excess of three years 
10.	Single person
11.	Physicals
12.	Futures
13.	Options
14.	Derivatives

We have taken this mapping data at face value from Coleman (2011), with the exception of 
aggregating some of the finer levels of granularity on the security type. These characteristics are 
somewhat subjective, and clearly it would be possible to define additional characteristics, but they 
are sufficient for our purposes to demonstrate this technique.
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Figure 41 shows the cladogram of this mapping.20

Figure 41: Cladogram of Large Derivative Loss Events and Characteristics
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Each branch in the above cladogram ends in a specific event. Each branching point is defined by 
a split in the characteristics as identified by the numbers that are common to all members of the 
subbranches. The length of the branch represents the number of characteristics that evolved to 
define that branch, with more characteristics leading the longer branches.

These diagrams are very useful in helping to visually identify patterns of interest. The first thing that is 
noticeable in this cladogram is the division into three major clades or groups:

�� Normal activity gone wrong
�� Fraudulent activity
�� Collection of simple events characterised by the use of a range of derivatives

These can be considered the fundamental risk elements. Essentially, the presence or absence of 
fraud defines the first major break in lineage. We can then analyse which event types are more 
evolved than others by analysing the branch length as shown in Figure 42.

20	 Cladograms produced by Neil Allan from Systemic Consult using Evolutionary Risk Analysis software.
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Figure 42: Cladogram of Large Derivative Loss Events and Characteristics: 

Evolutionary Events
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The bottom highlighted group, the derivatives clade, shows very little evolutionary process. These 
events can be considered to be relatively stable and unchanging in nature. They are the crocodiles of 
the risk world—they have reached their evolutionary peak and show little sign of emergent behaviour. 
Hence companies with similar operational activities to the sequence of characteristics of the events 
may be less likely to be exposed to emerging risks.

In contrast to these events, the two most evolved groups in the fraud clade show significant evolution 
through a large number of bifurcations in characteristics. They can be considered to be highly 
evolved risk events, essentially derivatives of earlier risk events that occur further back along the 
branch path. These types of events should be studied in detail, as they are likely to give us greater 
insight into the types of events that are more likely to be subject to evolutionary forces in the future. 
Companies with similar operational activities to the sequence of characteristics of the events may be 
more likely to be exposed to emerging risks. Generally, we see an increased complexity in the new 
risks that evolve in these highly active areas.
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Figure 43 looks at the characteristics that are defining the evolutionary process.

Figure 43: Cladogram of Large Derivative Loss Events and Characteristics: Characteristics
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Characteristics that appear frequently are more likely to appear in the future. The sequence of 
characteristics can also be important, as some tend to occur toward the end of branches rather than 
at the beginning. For example, characteristic 9 (long-term accumulated losses in excess of three 
years) always occurs at the end of a branch structure, indicating that it could readily jump across to 
another branch to define a new emerging risk characteristic.

We have highlighted bifurcations involving characteristic 8 (lax management/risk control problem). 
This is a very common characteristic as it is evident in almost all branches/events. In many cases, it is 
also evolving jointly along with a number of other characteristics such as:

�� 10: Single person
�� 5: Trading in excess of limits
�� 7: Failure to segregate functions

Characteristics 8 (lax management/risk control problem) and 5 (trading in excess of limits) seem in 
particular to be very closely related in evolutionary terms as they tend to appear together in sub-
clades. Note that this seems somewhat logical in hindsight, but we arrived at this conclusion through 
an objective analysis based purely upon a rich classification dataset. This could be very important 
information as it provides clues as to what characteristics emerging risk events might have in the 
future. From this we can then ask more focused questions of ourselves such as:
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�� If we see one of the jointly evolving characteristics in one branch but not the other, we can ask 
why, as it is breaking an evolutionary trend.

�� What would events such as the next West LB (very top) or NatWest Markets (near bottom) look 
like, if they evolved to contain a characteristic 5 (trading in excess of limits) as they already have a 
characteristic 8?

�� What would this event possibly look like if it happened at my organisation?

9.4	I mplications
This emerging operational risk framework has a number of implications.

The first is that risk can be seen to be an evolutionary process, which gives rise to emerging risks. 
This will be the case whenever the underlying system is a complex adaptive one, rather than a static 
or chaotic one. Investigating the evolving characteristics of system events in the past can provide 
insight into our understanding of how emerging risks might occur in the future.

The second is that it is important to capture multiple characteristics of operational risk events, both 
in terms of realised historical events, as well as forward-looking events. Valuable information may 
be lost if risks are forced into only single categories or characteristics, which may be the case if risk 
register software constraints exist, if a prescriptive risk classification framework is narrowly defined, 
or if the emerging risk identification approach is biased from the outset to focus on single operational 
processes or risk silos. The quality and completeness of loss data collection and the classification 
process become critical activities in the emerging risk process.

The third is that the risk taxonomy for operational risk can be determined objectively from the data, 
rather than being defined prescriptively in an ex ante sense. Risk taxonomies are almost always 
defined on the latter basis, resulting in linear structures, which is appropriate whenever system 
complexity is low. However, humans tend to overly simplify situations where there is complexity, 
losing valuable information in the process. By defining the risk taxonomy objectively through this 
framework, we are able to map the interrelationships and connectivity between different risk 
branches, to gain insight into how risk events are truly related.

This is closely related to the discussion on the boundary between operational risk and other risk 
types. Whilst it is a natural human response to try to carve everything up neatly into independent 
risk silos, with operational risk it is not quite as appropriate to do so because of the high degree of 
interaction with other risk types. It is also much more of a process rather than a single event, so its 
nature can and will tend to change over time. The example above of derivative losses is a good one 
as there are clearly elements of market risk, operational risk, and liquidity risk involved. We would 
suggest that we need to move beyond the traditional silo view to understand and ultimately to 
manage risks that span multiple silos.

The final implication is that the above framework provides a structured way of addressing emerging 
risk. It is another lens through which we can possibly gain insight into future emerging risk events 
that we haven’t yet seen, when we are not sure yet exactly what we should be looking for.
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10	Loss data collection

10.1	W hat is loss data collection?
One of the key elements to identify, measure, and manage operational risk is the availability of 
comprehensive loss data information. The process of loss data collection (LDC) is not just a question 
of the collection of data, but also the framework of how the data is specified. As previously noted in 
Section 6, the availability of homogeneous, complete, and reliable data is critical to the development, 
calibration, and use of operational risk measurement and management models, which support the 
identification and planning of operational risk mitigation actions.

Operational risk is usually defined by the cause of loss rather than the effect of the risk. However, 
both are equally important in understanding operational risks and hence both risk causes and effects 
should be identified when recording loss data.

In this context, the main objective of the LDC process is the assessment of the cause and effect 
generated by an operational event (i.e., the quantification of the loss). Effects should capture both 
direct financial/economic impacts, as well as non-economic impacts (e.g., reputational damage, loss 
of/damage to lives) and opportunity costs. A loss event is defined as a specific detrimental state of 
the business that generates one or more harmful effects (i.e., losses). Such events may also lead to 
further loss events. 

The collection process should include potential losses and should allow the analysis of recorded 
losses depending on their causes (i.e., risk factors/risk drivers). The collection of information solely 
on the effect of the risk is generally not sufficient, and each loss should ideally be analysed across 
various dimensions. 

The data recorded for each loss can generally be split into two main categories:

�� Quantitative information, such as the severity of loss, both before and after any recoveries  
(e.g., insurance)

�� Qualitative information, which enables a more detailed assessment of the nature of the loss such 
as the causal risk factor drivers and segmentation information such as geography, business line, 
event type, and activity type

10.2	 Methodology
In this subsection we discuss the theoretical and practical aspects of a best practice loss data 
collection process. LDC is, or at least it should be, much more than just a ritual process of recording 
loss amounts into a database. Instead, a mature and valuable process involves several steps or 
phases, with each presenting various challenges. These steps include:

1. Definition and identification
2. Loss data elements
3. Validation
4. Analysis
5. Reporting
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10.2.1	  Step 1: Definition and identification of the loss
The first step is to define how the losses will be identified, which should be included in the database. 
This should cover the following aspects:

�� Who is responsible for the identification of losses? For example, should it be from the top down 
(e.g., senior management), or from the bottom up with validation from senior managers?

�� Whether the loss should be identified by the business area impacted by the loss or by the 
business area related to the cause of the loss.

�� The loss data repository system.

�� The level of automation of loss collection. 

�� The thresholds used to define the level of detail required to be captured, including any minimum 
amount for reported losses. 

The main challenges that need to be addressed with this process are the possible biases that 
could result from people being reluctant to record losses caused by their business function or 
by themselves. This is largely a function of the risk culture within the organisation. The boundary 
between automated versus human loss recording also needs to be clearly defined and understood.

10.2.2	  Step 2: Loss data elements
The next step is to identify the quantitative and qualitative dimensions of the loss to be captured. The 
typical quantitative factors that need to be included are:

�� The magnitude of the loss.

�� Whether the loss is known with certainty or not. If a loss is uncertain, then what criteria are used 
to evaluate the probable loss? In some cases the maximum potential loss amount could be 
used, which is a conservative estimate, or alternatively the mean or mode of the loss could be 
appropriate, where a probability distribution effectively exists. 

�� The identification of any recoveries that might be known or expected, and the general criteria used 
to estimate them. In most of the cases recoveries are uncertain when the loss produces its effect 
(i.e., when it is included in the database). Moreover, in the case of more than one recovery, it could 
be that the various recoveries are not simultaneous, which means the estimation at the time of 
initial recording should take this effect into account. Rules should also be specified as to when to 
update the loss database when recovery information becomes available.

The typical qualitative factors to be included need to take account of:

�� Identification of a criteria to register the so-called linked event (i.e., a single event which impacts 
more than one business line) or when the responsibility for an event is factually unclear. In some 
cases where a linked event occurs, the loss is assigned to the business in which the event began 
and when the responsibility is unclear the event can be split to more than one business line/
process/risk factor (different criteria could be used, such as the owner of the transaction, the 
business process out of which the event arose, etc.).

�� Identification of robust criteria to register losses which are spread in time and/or which could be 
classified using multiple approaches (e.g., they could be associated to more than one event, etc.). 
The criteria should minimise the risk of double-counting losses and/or omissions (i.e., losses can 
be registered twice or more when associated to different events and/or not registered at all—this 
risk is higher in a bottom-up process). 
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�� Identification of the key parameters to be collected for each loss. It’s crucial to identify the 
minimum set of qualitative parameters which should be collected. Additional data could be 
recorded for the large loss event (i.e., an event which causes losses higher than a predetermined 
threshold for large loss events). The required information should be a balance between what is 
useful to generate significant clusters of the data versus what can be efficiently collected given the 
collection process. 

10.2.3	  Step 3: Validation
The third step involves validating the data collected. The purpose of validation of internal loss data 
is to ensure that data capture is complete, accurate, and appropriately classified. Given the nature 
of the LDC activity, the validation should be an ongoing process. As for any other check, validation 
should be properly documented and performed by an independent function/person with respect to 
the one who collected the information (the so-called second line of defence).

Aspects which need to be addressed in this step include:

�� Identification/creation/allocation of the role(s) within the organisation to do the validation. This will 
depend on the LDC approach and organisational hierarchy. 

�� Timing of the validation sign-off process.

�� The level of validation required. This should balance the cost of validation with the materiality of  
the benefit.

�� The appropriate level of documentation required for the validation process, which can be important 
because of the multiple temporal dimensions to loss recording.

10.2.4	  Step 4: Analysis
This step involves analysis of the data which has been collected. Analysis of the data involves 
quantifying the loss frequency and severity distributions by segment/cluster. The means, medians, 
variances, and tail quantities of this distribution are used to understand not only actual operational 
performance, but are also used to calibrate and validate the forward-looking operational risk models. 
One of the key issues that must be dealt with here is the level of granularity used to define each 
segment. More granularity leads to increased homogeneity, but at the likely cost of reduced data 
sufficiency, particularly for low likelihood high severity risks.

10.2.5	  Step 5: Reporting
The final step involves the development, production, and distribution of suitable reports for each 
type of stakeholder, both internal and external. This typically requires some form of reporting system 
which can access the data and produce reports in real time, ideally with functionality that enables the 
user to drill down into each segment of the data. As with any management information process, the 
scope, methodology, validation, and frequency of reports generated need to be well defined, and the 
reporting process needs adequate resources to be effective.

10.3	I mportant design elements

10.3.1	  Recoveries management
One of the important design elements of the LDC process is the ability to record information on 
recoveries. A recovery is a dependent event, separate in time from the original loss event but 
intimately related to it, which reduces the size of the loss. A recovery arising from insurance policies, 
settlements, and/or repayments could either be direct or indirect. An indirect recovery relates to a 
recovery paid for in advance, such as a recovery of loss through an insurance contract, whereas a 
direct recovery relates to a recovery of loss that is obtained after the event.
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Recoveries should be captured as a separate field in the database and reports, and should be able 
to capture the information on losses both gross and net of all recoveries. A decision should also be 
taken as to whether to include or exclude expected recoveries on potential losses.

Any severity thresholds used are typically applied to gross losses, rather than losses net of 
recoveries, although there is information value in both measures.

The LDC process should allow for material durations between the date of an event occurrence and 
the dates of loss estimation and related recoveries. The LDC process should therefore allow for initial 
estimation of the losses/related recoveries, which are refined in various subsequent steps. A quite 
common practice is to record information on recoveries on a dedicated and separate session of each 
loss, where detailed information on each recovery can be recorded and managed, for example:

�� Recovery type (direct, indirect)
�� State of the recovery amount (estimated, actual)
�� State of the recovery (closed or open)
�� Expected amount 
�� Actual amount received
�� Additional information to identify the recovery (e.g., insurance company and policy number in the 

case of insurance recoveries)

10.3.2	  Choice of granularity
Another key design element of the LDC process is the choice of granularity. This should be struck at 
a level that balances:

�� The need for detailed information to calibrate operational risk models and to inform the 
effectiveness of actual operational risk mitigation and management activities.

�� The need for data sufficiency in order to have meaningful summary statistics for the above.

�� Appropriate breadth to enable analysis from different and multiple perspectives. Ideally, data 
should be recorded at the most granular level possible, enabling the risk structure/segmentation to 
be determined objectively on an ex post basis.

The Working Paper Basel Committee21 is considered as the starting reference point for setting up 
the classification of events and losses in an LDC. This could be a guide for both banks and insurance 
companies as well as for any other companies that can just apply appropriate adjustments to fit the 
indication to the operational risk type/organisation specificity of the relevant business.

The model proposed by the Basel Committee breaks down operational risk exposures and losses 
into the following categories:

�� Time: Dates of occurrence, discovery, loss severity estimation, loss severity finalisation, and profit 
and loss (P&L) recognition.

�� Geography: Country code where the loss occurred, and where it was booked.

�� Business line: The functional business unit(s) involved in the loss.

�� Product/service type: The products and services that form the sources of revenue to which the 
operational loss relates.

21	 Refer Working Paper Basel Committee (2001).
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�� Process type: The operational activities to which the loss relates.

�� Event type: The nature of the underlying event.

The classification of loss event type represents the heart of a loss data collection and the Basel 
Committee suggests the use of three levels of granularity:

�� Level 3 category, which identifies the single activity which caused a loss (e.g., transactions not 
reported—intentional, misappropriation of assets, malicious destruction of assets, etc.)

�� Level 2 category, which identifies the activity type that caused the loss (e.g., unauthorised activity, 
theft and fraud, etc.)

�� Level 1 category, which is the least granular and identifies seven macro activity types (i.e., internal 
fraud; external fraud; employment practices and workplace safety; clients products and business 
practices; damage to physical assets, business disruption, and system failures; execution; delivery 
and process management).

10.3.3	  Data quality
One of the most important aspects of the LDC process is to ensure that data captured is of sufficient 
quality for the uses to which it will be put. This can be quite challenging given the potentially large 
amount of data that could be or is collected in the LDC process, as well as the nature of the loss 
assessment process, which can involve expert judgment, certain data, and quantitative estimates. For 
this reason, the data validation process should cover a number of dimensions such as loss definition, 
identification of loss sources, estimation methods, completeness of data capture, consistency of 
categorisation, etc.

An adequate validation process should therefore comprise all the dimensions of the LDC process, 
including both sample tests and regular reconciliations. 

To stress the relevance of the validation process, the global operational loss database manager 
for the banking sector ORX22 supports data quality through processes operated by the Quality 
Assurance Working Group (QAWG),23 which specified a number of tests to be applied to data as 
well as an annual data attestation exercise and periodic portfolio reviews. Companies sending data 
to ORX are expected to conduct an annual data quality review involving an independent party with 
appropriate expertise. 

10.3.4	  Data sufficiency
The availability of complete, consistent, and meaningful data is a critical issue in operational risk 
management and this is true both from operational risk modelling and management points of view. 

Bias can be introduced in a number of ways through the data collection process. Firstly, in some 
instances, data may be completely missing for particular business lines, event types, or time periods.

Data might also be biased because of the use of minimum thresholds in order to control the cost 
of recording high-frequency, low-severity losses. This approach, which is necessary and reasonable 
from a practical point of view, can lead to significant distortion of statistical analytic results. An 
example of this is ORX,24 whereby only gross losses equal to or greater than EUR 20,000 (as an 
individual event or an aggregate event amount) are recorded. 

22	 Refer ORX (2011)
23	 See QA Working Group (QAWG) Home Page, available at http://www.w3.org/QA/WG/.
24	 Refer ORX (2011).
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For certain event types and business lines, an organisation might have no known or recorded 
operational losses. However, this does not mean that their likelihood of occurring is zero. In these 
cases, access to a database of external loss events for similar organisations could provide a valuable 
source of information in which to address such biases.

10.4	 Risk measurement and management use cases
A valid and complete loss data collection process, both qualitatively and quantitatively, represents 
a vital source of empirical information that enables the assessment of operational risk through the 
application of statistical models. Although this is an important use case from the perspective of  
this report, an LDC process has various other use cases that are just as important, if not more so. 
These include:

�� An LDC process can help organisations which do not have sophisticated statistical models to 
quickly estimate the order of magnitude of particular operational risks. This can facilitate a quick 
comparison of current operational risk exposure against historical levels, risk appetite levels, 
external regulatory requirements, and competitors.

�� An LDC process can strengthen risk management culture and force a higher level of risk 
consciousness within the organisation.

�� An LDC process can be used to monitor and manage current operational risk exposure, providing 
useful information to implement risk mitigation strategies. For example, an organisation can identify 
the processes and business functions where more operational losses have been registered, and 
decide to change the focus of current risk mitigation efforts in order to reduce losses. Information 
captured on actual costs of the operational risks enables the cost-benefit analysis of possible 
mitigation strategies to be completed.

10.5	 Possible future developments
One of the main challenges in designing and implementing an LDC process is the lack of low 
frequency high severity losses. Outside of this, it can also be challenging for a single organisation to 
generate statistically adequate and robust datasets for each risk segment.

For these reasons, it can be beneficial and, in some cases, necessary to create a database which 
registers loss information coming from various organisations in an industry. A primary example of this 
is the ORX25 database for the global banking industry, covering 62 members from 18 countries (as at 
November 2012).

The use of external data varies considerably by industry and organisation. Some companies use 
external data to fill gaps in internal data, and some use it to inform scenario analysis, whilst others 
compare the frequency of internal losses to external losses. Having access to an external database 
can really only be a positive thing, because internal databases by definition only register incidents 
that have already occurred in the company, which is not a complete picture of forward-looking 
events. In order to obtain a more realistic basis of measurement, sampling of loss data obtained from 
other like organisations can add significant value. The use of this data, however, requires additional 
effort in order to analyse it and make any necessary adjustments such that it becomes appropriate to 
the specifics of the primary organisation.

One possible future development could be the creation of external loss databases for organisations 
in industries other than banking. This would enable contributing members access to aggregate data 
on a no-name basis, and provide a valuable resource for academics and other researchers to use 
in order to generate insightful research to the benefit of the industry. There is potentially much to be 
gained from leveraging the framework provided by ORX to expand it to other industries. Whilst there 

25	 See the ORX Association website at http://www.orx.org/.
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would be significant value to be derived from this, there are also a number of challenges that would 
need to be overcome, including:

�� A minimum number of organisations are required at outset to contribute data in order for a sufficient 
aggregation of data to occur such that any one organisation’s data is not able to be inferred.

�� A central processing function or organisation needs to be established (such as ORX) which 
can support an external LDC process, which might also require an element of funding. This 
organisational function should provide not only an efficient mechanism to collect and report data, 
but it should also provide relevant warranties to all parties in term of data protection. It could be 
necessary to gain the support of industry, regulatory, or governmental associations. 
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11	Case studies

11.1	 Basic indicators and standard formula approaches
The main purpose of using basic indicators and standard formulas for calculating capital 
requirements is to keep the calculations as simple and as widely applicable as possible. As such, 
they are unlikely to appropriately assess operational risk for all possible financial products, either 
in the market or that may possibly be conceived. It is thus important to be aware of their main 
drawbacks and weaknesses. In order to help illustrate them, we provide some case study examples 
below of situations in which products with arguably comparable risks result in significantly different 
operational risk capital requirements according to these methods.

Let us for example consider two life insurance products: an endowment and a level term policy. The 
difference between them is that while the latter pays the sum assured only in case of death within 
the specified term, the former also benefits policyholders who survive the whole period. Because the 
probability of survival is much higher than the probability of death for the vast majority of policyholder 
ages, the premiums for the endowment are usually much greater than those for the level term policy; 
and a larger proportion of them need to be kept as a reserve to fund the payouts.

To illustrate this, consider a European insurance company subject to the Solvency II regulatory 
framework, with a mixed portfolio consisting of savings, unit-linked products, and risk products, with 
the number of policies comparable between these categories. 

Let’s assume that in 2011 the company had EUR 124 million of operational risk (SCROp). EUR 6.6 
million of this was generated by EUR 655,000 unit-linked product expenses, whilst the rest related 
to traditional products. The average annual premium of the 839,000 pure risk policies is EUR 838, 
whilst on 467,000 non-unit-linked savings products it is EUR 4,726.

Suppose that, while keeping average amounts and the total number of policies constant, the 
composition of the company portfolio changes significantly, and all policies become non-unit-linked 
savings products. In such a case, Opprem would increase to EUR 370.9 million—that is, almost triple 
the original amount. On the other hand, if the portfolio comprised only pure risk policies, Opprem 
would reduce to EUR 68.9 million—almost by 50%. To highlight an even more extreme event, if all 
those policies were unit-linked, operational risk capital would reduce to less than EUR 20 million—
which is slightly more than 5% of the amount in the first of our cases.

Details of these calculations can be found in Figure 44 (number of policies and averages are for 
traditional business).

Figure 44: Examples of Capital Requirements: Insurance Standard Formula

	Ba se Case	Ca se Risk	Ca se Savings	Ca se Unit-Linked

Number of policies	 1,306,940	 1,962,214	 1,962,214	 -

Average premium	 2,254	 878	 4,726	 -

Opprem	 117,854,099	 68,915,310	 370,943,999	 -

Average reserve	 14,063	 383	 39,318	 -

Opprov	 82,709,502	 3,384,348	 347,180,017	 -

UL expenses	 26,210,936	 -	 -	 -78,488,546

SCROp	 124,406,833	 68,915,310	 370,943,999	 19,622,136

% of Base Case	 100%	 55%	 298%	 16%

It is hard to find any justification of such large differences in operational risk across these scenarios. 
Operational risk in the different kinds of policies doesn’t seem to exhibit a different profile; this is 
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particularly true in the case of traditional products with equal sum assured. Pure risk products can 
also be more prone to operational losses than saving products, which is not captured in this example.

The actual historical growth of the company also highlights a different problem with this approach. 
Because of the favourable economic conditions, premiums of traditional products in 2011 have 
grown by 72% (from almost EUR 3 billion to about EUR 5 billion), while the number of policies has 
been relatively unchanged. This caused the SCROp to grow by 127% (to EUR 270 million). It is 
doubtful whether this increase represented growth in operational risk exposure as the company is 
unlikely to have changed operational processes or activities, and had even experienced this situation 
before. Clearly the use of such simple methods can be very misleading.

11.2	 Loss distribution approach
This section provides an example of the Solvency II solvency capital requirement (SCR) simplified 
calculation, for a medium-size Italian insurer. This case study example will highlight the main steps 
and aspects of the loss distribution approach (LDA).

11.2.1	  Company context
This case study is based on an assumed medium-size Italian bancassurance company, with a  
retail business selling unit-linked, with-profit, and term products through the bank’s agency 
distribution network.

Assume that the LDC database used is well structured, but with just three years of history, so it 
needs to be integrated with external data and expert opinions to build a sound model. For these 
reasons, a simplified LDA model will be used, grouping data into seven event type risk categories.

Analysing the gross data, total losses amount to EUR 9 million, with 90% of loss events producing 
losses that are less than EUR 10,000, and less than 1% being greater than EUR 1 million, as shown 
in Figure 45.

Figure 45: Examples of Loss Segmentation by Loss Severity Buckets
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Notice that 90% of events produce just 3.3% of the total losses, whilst losses over EUR 1 million are 
only 0.9% of the total number but collectively account for 41.1% of total losses. This is the numerical 
evidence of the dominance of low frequency high severity events on total losses.

If we segment data by event type, it is clear that it is dominated in size by two event types: Clients, 
products, and business practice and Execution, delivery, and process management. They cover 
90% of the losses generated over the three years; and each event type also exhibits volatility across 
the different years. Figure 46 summarises these observations.

Figure 46: Examples of Loss Segmentation by Event Type

If we look at the data in terms of frequency and severity, we can see how the different event types 
have different characteristics, as shown in Figure 47.

Figure 47: Examples of Loss Segmentation by Loss Severity Buckets and Event Types

YEARLY AVERAGES OF GROSS DATA 

Event Type	T otal Loss (€)	N umber of Events	L oss per Event (€)

Clients Products and Business Practice	 1,196,640	 9	 128,211

Disasters and Public Safety	 106,673	 2	 64,004

Execution, Delivery, and Process Management	 1,496,192	 363	 4,122

External Fraud	 63,386	 2	 38,032

Internal Fraud	 38,867	 2	 23,320

Technology and Infrastructure Failures	 103,721	 10	 10,372

Employment Practice and Workplace Safety	 9,018	 2	 3,865

Total	 3,014,497	 390	 7,736
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This data exhibits some consistency with the ORX data26 and analysis, which states that ... the top 
three event types [by size] are 'Execution, Delivery & Process Management', 'External Fraud' and 
'Clients Products & Business Practice' ... The one difference is that, in our case study, external fraud 
is not in the top three. 

If we focus on the Execution, Delivery and Process Management event type, it look like a high- 
frequency, low/medium-severity event type class, but if a threshold of EUR 1,000 is set, then this 
changes somewhat, as evidenced by Figure 48.

Figure 48: Examples of Losses Concentration

YEARLY AVERAGES OF GROSS DATA 

Event Type 	T otal Loss (€) 	N umber of Events 	L oss per Event (€)

Execution, Delivery, and Process	 1,482,628	 19	 79,426

Management (events that produce 

a loss bigger than €1,000)

Execution, Delivery, and Process 	 1,496,192	 363	 4,122

Management (all events recorded)

It is clear that almost all the losses are generated by just a few events, so once again the dominance 
of low frequency high severity events can be observed in a single risk category. This is an easy 
example that underlines the importance of an adequate segmentation of data for frequency and 
severity curve fitting, in order to capture skew effects.

11.2.2	  Distribution and correlation fitting
Because this case study is intended to be a simplified LDA model, for all the events types, the 
frequency distributions are modelled with a Poisson process and the severities are modelled with a 
lognormal distribution (we assume that the reader is familiar with the calibration of these distributions 
to a given dataset, and do not describe the parameter calibration process). For each risk category, 
an aggregate cumulative loss distribution is obtained through the Monte Carlo simulation of the 
convolution of the frequency and severity distributions. For simplicity we have assumed that these 
distributions are independent of one another. Figure 49 on page 82 shows graphically the shape of 
the distribution for one event type.

26	 Refer ORX (2011).
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Figure 49: Summary of the Main Steps of an LDA

Once this process is complete for each risk category, a simple assessment of model fit can be made 
by the comparison between the mean of the raw data and the mean of the modelled aggregate 
distribution. In addition to this, it is possible to calculate the VaR99.5% statistic for each event type, 
and the sum of all the VaR numbers will provide a rough benchmark to compare with the total losses 
distribution VaR (which is due to the effect of diversification, notwithstanding the limitation that VaR is 
not a coherent risk statistic). 

Figure 50: Examples of Capital Requirement by Event Type

	 DATA 	 MODEL 

Event Type 	T otal Loss (yearly average) 	M ean 	V aR99.5%

Clients Products and Business Practice	 1,196,640	 1,105,944	 8,855,135

Disasters and Public Safety	 106,673	 252,916	 9,760,624

Execution, Delivery, and Process Management	 1,496,192	 1,700,701	 5,901,388

External Fraud	 63,386	 35,382	 502,020

Internal Fraud	 38,867	 24,039	 587,671

Technology and Infrastructure Failures	 103,721	 117,554	 865,331

Employment Practice and Workplace Safety	 9,018	 10,723	 280,751 

Total (sum)	 3,014,497	 3,247,259	 26,752,919*

* This is just the sum of the elements, it is not the VaR for the total losses.
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Because of the limited availability of only three years of data, it is not possible to undertake a 
quantitative estimation of the correlation matrix for the copula method. Instead, a qualitative analysis 
of data and risk categories compared to the dependence structure in the ORX database was made, 
which led to a qualitative assessment of the dependencies with the matrix shown in Figure 51.

Figure 51: Examples of Dependencies Between Event Types

EVENT TYPES DEPENDENCE HEAT MAP

CPBP DPS EDPM EF IF TIF

Clients Products and Business Practice (CPBP)            

Disasters and Public Safety (DPS) none          

Execution, Delivery, and Process Management (EDPM) med none        

External Fraud (EF) low none low      

Internal Fraud (IF) none none none
very 
low

   

Technology and Infrastructure Failures (TIF) med
very 
low

very 
low

med
very 
low

 

Employment Practice and Workplace Safety (EPWS)
very 
low

none
very 
low

none Low None

Note that the two dominant events (CPBP and EDPM) are correlated, so it will be expected that 
dependencies are relevant in the calculation of operational risk capital. This is discussed in the 
following subsection, where an uncorrelated Gaussian copula is used in comparison to a Gaussian 
copula. In addition to this, a correlated Gaussian copula will also be compared to Student’s t-copula 
with different degrees of freedom, in order to show the impact of the copula used to aggregate risks.

11.2.3	  Operational risk capital assessment
The risk measure adopted in Solvency II to calculate the SCR for operational risk is the  
VaR99.5% statistic. 

The first step is to choose the type of copula that is the most appropriate to use. The two most used 
are the Gaussian and the Student’s t-copulas. This choice is not arbitrary as it depends on the data, 
and it must be supported by statistical analysis. The benefit of using the Gaussian copula is that we 
reduce the impact of the tails. In other words, if we have aggregate fat-tailed distributions, with a 
Gaussian copula we obtain an aggregate distribution with thinner tails. If we are aggregating heavy-
tailed distributions (as it is in most LDA models) a Student’s t-copula would be preferred because it 
can avoid this effect. The Student’s t-copula has one parameter, degrees of freedom. The closer it is 
to zero, the more the heavy tail of the marginal distributions (e.g., the distribution of each event type) 
are preserved or even enhanced in the aggregation process. The further away it is from zero, the 
more the copula tends toward becoming Gaussian. 
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Figure 52 compares the SCR, mean, and median of the total loss distribution obtained using 
the Gaussian copula and the Student’s t-copula with different degrees of freedom (based upon 
1,000,000 simulations).

As expected, moving from a Gaussian to a Student’s t-copula increases the SCR. The issue of the 
VaR statistic not being coherent is also evident here. Whenever the degrees of freedom are 10 or 
below, the VaR99.5% of the total loss is bigger than the sum of the VaR of each single risk (circa 26 
million), resulting in a non-sensible negative diversification effect.

The other key element in this calculation is the effect of the correlation matrix on the SCR. In the 
previous section we defined a qualitative correlation matrix for the copula. Figure 53 compares the 
results if we consider normal or high correlation parameters to having zero correlations  
(i.e., independence). 

Figure 53: Examples of Capital Requirement by Correlation Assumptions

		Ga  ussian 

	 no correlation 	 normal correlation 	h igh correlation

Median	 2,745,900	 2,693,730	 2,635,674

Mean	 3,282,048	 3,285,306	 3,284,674

VaR99.5%	 12,374,408	 13,121,395	 14,060,921

As expected, the correlation parameters have no material impact on the mean or mediate results, but 
they do have a material impact on the tails and hence capital. Figure 54 presents the SCR, mean, 
and median for all the aggregation types.

Figure 52: Examples of Capital Requirement by Loss Distribution Curve Assumptions

		S  tudent's t	S tudent's t	S tudent's t	S tudent's t	S tudent's t	S tudent's t

	Ga ussian 	 dof=100 	 dof=50 	 dof=25 	 dof=10 	 dof=4 	 dof=3

Median	 2,693,730	 2,612,042	 2,615,644	 2,630,381	 2,668,094	 2,776,721	 2,836,758

Mean	 3,285,306	 3,296,856	 3,349,237	 3,463,551	 3,897,981	 6,102,504	 8,321,521

VaR99.5%	 13,121,395	 16,128,774	 18,024,158	 22,004,621	 54,073,759	 122,230,574	 193,101,285
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Figure 54: Examples of Capital Requirement: Summary of Results

From this case study we conclude that the issues of data segmentation (as shown in Figure 47 
above), skewness of distributions, and the choice and calibration of the aggregation measure can 
all have a material impact on the generation of an operational risk evaluation. In particular, this case 
study shows the material impact that the choice and calibration of both the severity distributions and 
the copula have on capital requirements.

With respect to the choice and calibration of the copula it is important to note the key role that 
expert judgment plays. A robust calibration of the parameters of a copula would ideally require the 
availability of a significant sample of data. However, available data is typically quite limited, so it is 
important to undertake ex post coherence analysis to check the sensibility and consistency of the 
calibration results.

11.3	S tructural or causal model

11.3.1	  The challenge
Perhaps the most significant operational risk that can and has caused banks to fail is rogue traders. 
Rogue traders are authorised employees that make unauthorised trades on behalf of their employers. 
Such traders typically use derivative financial instruments in the context of a proprietary trading 
operation, where large financial exposures against a wide array of market risks can be created 
relatively quickly.

Nick Leeson is perhaps the quintessential rogue trader, whose losses in 1995 were sufficient to 
bankrupt Barings Bank. The table in Figure 55 on page 86 shows a brief selection of some of the 
largest rogue trader losses that have occurred over the last two decades.
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Figure 55: Examples of Rogue Trader Losses

Name Date Institution Country Instruments

Loss (in 

millions)

Nick Leeson 1995 Barings Bank UK Nikkei index futures GBP 827

Toshihide Iguchi 1995 Daiwa Bank Japan, United 

States

U.S. T-bonds USD 1,100

Yasuo Hamanaka 1996 Sumitomo 

Corporation

Japan Copper USD 2,600

John Rusnak 2002 Allied Irish Banks United States Foreign exchange 

options

USD 691

Gianni Gray, David 

Bullen, Vince Ficarra, 

Luke Duffy

2003-2004 National Australia 

Bank

Australia Foreign exchange 

options

AUD 360

Chen Jiulin 2005 China Aviation Oil Singapore Jet fuel futures USD 550

Brian Hunter 2006 Amaranth Advisors United States Natural gas futures USD 6,500

Jerome Kerviel 2006-2008 Societe Generale France Euro stock index 

futures

EUR 4,900

Boris Picano-Nacci 2008 Groupe Caisse 

d’Epargne

France Equity derivatives EUR 751

Kweku Adoboli 2011 UBS Switzerland S&P 500, DAX, 

EuroStoxx index 

futures

USD 2,300

For risk managers and executives, such events are the stuff of nightmares. Many executives in these 
businesses at the time of these events describe themselves as being dumbstruck as to how such 
severe losses could appear to be completely out of the blue.

So how can we as risk managers make these seemingly unpredictable risk events predictable? This 
is a critical question for any company that operates in the financial markets, particularly those using 
derivatives, and even more so those who are operating proprietary rather than hedging operations. 
For banks, this risk is a material part of the operational risk capital that they must hold under Basel 
II, and for regulators it is a critical risk that has the potential to destabilise the financial system if it 
occurs to a systemically critical institution.

As risk managers, the key questions we want answers to are:

�� How can we identify the conditions that are likely to cause such events?

�� How can we assess the likelihood, severity, total expected losses, and capital measures, in order 
to determine an appropriate level of operational risk capital to hold?

�� How can we link risk assessment with the unique and observed state of the business?

�� How can we determine what business drivers are the most critical factors in driving this risk?

�� Are actual risk exposures within our risk appetite?

�� How can we determine what the most effective risk mitigation actions are to reduce this risk?

�� How can we continue to do the above whilst our business and operational processes  
keep evolving?
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These questions set a very high standard for a risk framework to live up to, particularly so for such an 
extreme risk in terms of severity and frequency.

11.3.2	  Traditional risk management approach
The traditional approach to managing this risk involves two main avenues:

�� Mitigation via operational process controls and risk reporting
�� Capital assessment via LDA or scenario approaches

Significant resources are allocated to the management of operational process controls and risk 
reporting to help companies control the likelihood of these events occurring. Typical risk mitigation 
activities include:

�� The setting of risk exposure limits
�� The separation of back, middle, and front office operations
�� Frequent risk and audit reporting

No doubt they have been effective in mitigating many potential trading errors and breaches, although 
clearly they were ineffective in the examples in Figure 55. So the question is how can we ensure 
that risk mitigation activities are structured and completed in a way that they are most effective in 
reducing this risk?

From an assessment perspective, both the likelihood and severity of these events present particular 
problems. For the majority of companies that have not experienced a rogue trader, no internal 
loss data exists from which to draw upon. Furthermore, the variability in the range of instruments 
exploited, as detailed in Figure 55, and the unique and differing nature of each one’s operations and 
risk control framework to the business under question, do not engender a high degree of confidence 
in the use of external loss data for this risk. 

Assessment of the frequency of such events is also problematic, particularly when it is necessary to 
have sufficient accuracy in order to derive a 99.5th or 99.9th percentile result for capital calculation 
purposes. Humans are naturally pretty poor at assessing the properties of statistical distributions, 
and the degree of value placed in any one person’s judgment as to how often such an event is likely 
to occur over the span of two to 10 times their own life expectancy must be naturally very low. This 
also severely flaws the use of scenario analysis, which is heavily dependent upon the unconditioned 
expectations of individuals hypothesising what such losses might look like.

Such unconditioned statistical approaches can be more harmful than helpful in these situations, as 
the structural dynamics of the operational process which the statistical process is trying to capture 
are highly unlikely to be stationary (i.e., static or stable).

11.3.3	  Eliciting the structure of the risk system with cognitive mapping
We believe structural frameworks are the most appropriate way to address the challenges this risk 
poses. The starting point for such an approach is to elicit the system structure of this risk using 
cognitive mapping techniques. This technique elicits the system structure through a qualitative 
assessment of the drivers of the business. This can be done using a variety of sources, including 
reports of similar internal or external events or through workshops with the relevant subject matter 
experts involved in all aspects of the business operation.

For the purposes of this case study, we have constructed such a cognitive map based upon the 
investigation into the Society General event, overlaid with our own subjective judgment leveraging 
our own derivative hedge management operational expertise in this field. The diagram in Figure 56 
shows this cognitive map.
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In practice, these cognitive maps would be derived from operational business experts. Multiple views 
would be taken into account in order to minimise the natural human bias and gaps that any one 
individual would be subject to.

1 Mark-to-market
Fraud Profits and

Losses

2 Length of time
increases that

exposures can build
up over

3 Total Operational
Trading Losses

5 Knowledge of
weaknesses across
trading processes
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weaknesses across
risk mitigation and
control processes
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Figure 56: Cognitive Map of Rogue Trading
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The map in Figure 56 is intended to be indicative only for the purposes of illustrating this case study, 
rather than a complete description of Society General or any other company’s particular risk system 
structure. Whilst broad similarity would be expected in the structural components of these maps 
between companies, the more detailed drivers and key risk indicators (KRIs) that accompany them 
will tend to becoming increasingly unique.

The cognitive map in Figure 56 can be broken down into the following components:

�� The likelihood of fraudulent trading: This is a function of the knowledge, capability, and 
willingness of individuals to undertake fraudulent trading activity.

�� The severity of fraudulent trading: This is a function of the degree to which risk exposures could 
potentially be increased as well as the state of the market to impact the profit and loss.

�� The crisis management process: This describes the process by which management resolves the 
crisis, which can have a very large effect on the final losses incurred.

We now discuss each of these in further detail.

11.3.4	  Likelihood of fraud
The likelihood of fraud represents the probability that a fraud event will occur. Three conditions are 
necessary for trading fraud to occur:

1.	Knowledge: The person(s) must have the knowledge of the entire trading process, as well as that 
of the risk control processes.

2.	Capability: The person(s) must have the capability to influence the trading process and systems.

3.	Willingness: The person(s) must have the willingness to act to commit fraud.

If only one or two of these conditions are met, then fraud will not occur. Hence the probability of 
fraud needs to be conditioned upon the state that these dependent drivers are met. For example, 
Figure 57 outlines a possible joint distribution probability state space reflecting the mean and 
uncertainty estimates for various combinations of dependent states. These would be determined 
based upon a combination of expert judgment, historical data, and current measures. The analysis 
could be segmented to apply to a specific group, team, or individual as necessary.

Figure 57: Indicative State-Based Probability Measures of Likelihood

Joint				M    ean	U ncertainty

Probability 				L    ikelihood	L ikelihood

State	K nowledge	Capa bility	W illingness	 of Fraud	 of Fraud

State 1	 No	 No	 No	 0.01	 0.01

State 2	 No	 No	 Yes	 0.05	 0.05

State 3	 No	 Yes	 No	 0.05	 0.05

State 4	 No	 Yes	 Yes	 0.10	 0.10

State 5	 Yes	 No	 No	 0.05	 0.05

State 6	 Yes	 No	 Yes	 0.10	 0.10

State 7	 Yes	 Yes	 No	 0.10	 0.10

State 8	 Yes	 Yes	 Yes	 0.95	 0.05
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Note that the mean and uncertainty estimates refer to the mean and standard deviations of a 
truncated normal distribution with a range of 0 to 1. These means and uncertainty estimates are highly 
conditional upon their underlying state variables, and there is a huge degree of nonlinearity involved.

Whether the group/team/individual has the knowledge or not is likely to be (at least) dependent upon:

�� Their knowledge of the weaknesses in the front, middle, and back office trading processes. This in 
turn could be influenced by whether they have held a role in more than one of these positions.

�� Their knowledge of the weaknesses in the risk mitigation and control processes.

By identifying these drivers, we can immediately see where risk mitigation actions can be inserted to 
influence the likelihood of these outcomes:

�� Ensure that people have not held roles in all positions within the trading process within the 
organisation, and potentially not with other similar organisations

�� Ensure that the knowledge of the risk mitigation and control processes are kept at least mostly 
from those of involved in trading

Figures 58-60 show indicative Bayesian models for each of the three elements of likelihood. They 
have been parameterised using indicative Boolean distributions. Each element would be assessed 
reflecting both the quantity and quality of any information available that is relevant. For some drivers, 
there might be a significant amount of high-quality information that can be objectively assessed, such 
as prior employment in back office, whilst other drivers might have a lower degree of data quality, 
such as effectiveness of risk managers. The scenario in blue shows a typical risk measurement 
scenario, whilst the scenario in green is a reverse stress scenario where the outcome is conditioned 
to be 100% likely, and the underlying risks are resolved using Bayesian inference.

Figure 58: Bayesian Network for Knowledge of Weaknesses
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Figure 59: Bayesian Network for Capability

Figure 60: Bayesian Network for Willingness
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In the reverse stress scenarios above, the source of deterioration relative to the current risk-
measured scenario can be clearly identified. This provides important information on where to focus 
risk control efforts.

11.3.5	  Potential fraud severity
Potential fraud severity is dependent upon the types of instruments traded, the frequency with 
which they are traded, and the nature of the trading strategy (hedging vs. proprietary). These risk 
factors determine exposures to market levels (delta) and interest rates (rho) and, combined with the 
exogenous risk of market levels and interest rates, result in potential severity levels.

Figure 61 shows a Bayesian network for these factors using an indicative parameterisation.

Figure 61: Bayesian Network for Fraud Severity

Note the high degree of nonlinearity in the exposure levels, which drive highly nonlinear severity 
estimates. Also note that the mode of loss severity is very low, but with a significant right-hand tail.

11.3.6	  Expected loss
Severity is also potentially impacted by the liquidation process. If this is constrained, in the sense 
that exposures need to be unwound immediately regardless of capital market conditions, then losses 
can be significantly greater than if flexibility exists to be able to manage the process. This is because 
trade volumes can be significant proportions of market turnover. Furthermore, if liquidity in the capital 
markets is constrained, then losses can also be significantly higher.
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Figure 62 shows the derivation of expected losses, based upon the likelihood, severity, and 
liquidation process. Note that the expected loss curve is highly skewed, and we have shown this in 
log form to show the distribution in greater detail.

Figure 62: Bayesian Network for Expected Losses

From this it is possible to derive the risk measures such as a mean loss of $200 million, whilst the 
99.5th percentile loss is $2.7 billion. This framework thus is able to model a full range of modelled 
outcomes as a complex function of risk drivers of the business.
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